Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T06:44:15.981Z Has data issue: false hasContentIssue false

Surface Modification of Polymer by Ion Assisted Reaction in Reactive Gases Environment

Published online by Cambridge University Press:  03 September 2012

S. K. Koh
Affiliation:
Division of Ceramics, Korea Institute of Science and Technology, P.O.Box 131, Cheongryang Seoul, 130-150, Korea
S. C. Choi
Affiliation:
Division of Ceramics, Korea Institute of Science and Technology, P.O.Box 131, Cheongryang Seoul, 130-150, Korea
W. K. Choi
Affiliation:
Division of Ceramics, Korea Institute of Science and Technology, P.O.Box 131, Cheongryang Seoul, 130-150, Korea
H. J. Jung
Affiliation:
Division of Ceramics, Korea Institute of Science and Technology, P.O.Box 131, Cheongryang Seoul, 130-150, Korea
H. H. Hu
Affiliation:
Samyang group, R&D Center, 63-2 Hwaam-Dong, Yusung-Gu Taejeon, Korea
Get access

Abstract

Wettable surface of polymers (advanced wetting angle ∼10° and surface energy ∼ 60 ∼ 70 erg/cm2) have been accomplished by the ion assisted reaction, in which energetic ions are irradiated on polymer with blowing oxygen gas. The energies of ions are varied from 0.5 to 1.5 keV, doses 1014 to 1017 ions/cm2, and blowing rate of oxygen 0 ∼ 8 ml/min. The wetting angles are increased when the wettable polymers were exposed in air, but are remained in pure water. Improvement of surface energy is mainly due to the polar force. Surface analysis shows hydrophilic functional groups such as C=O, (C=O)-O, C-O, etc., are formed without surface damage after the ion assisted reaction treatment. Comparisons between the conventional surface treatments and the ion assisted reaction are described in term of physical bombardment, surface damage, functional group, and chain mobility in polymer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Koh, S. K., Jin, Z., Lee, J. Y. and Jung, H. J., J. Vac. Sci. Technol. A 13, 2123 (1995).Google Scholar
2. Choi, W. K., Jung, H. J. and Koh, S. K., J. Vac. Sci. Technol. A14, 359 (1996).Google Scholar
3. Martin, P. J., J. Mater. Sci. 21, 1 (1986).Google Scholar
4. Mattox, D. M., J. Vac. Sci. Technol. A7, 1105 (1990).Google Scholar
5. Bean, J. C., Beaker, G.E., Petroff, P. M. and Seidel, T. E., J. Appl. Phys. 48, 907 (1977).Google Scholar
6. Torrisi, L., Calcagno, L., and Foti, A. M. Nucl. Instrum. Methods. B32, 142 (1988)Google Scholar
7. Jones, E. C., Shinichi, W. E., Fraser, D. B. and Cheung, N. W., J. Vac. Sci. Technol. B12, 956 (1994).Google Scholar
8. Seidal, T. E. and Larson, L. A., MRS bulletin, 17, 34 (1992).Google Scholar
9. Hultman, L., Helmersson, U., Barnett, S. A., Sundgren, J. E. and Greene, J. E., J. Appl. Phys. 61, 552 (1987).Google Scholar
10. Forest, S. R., Kaplan, M. L., Schmidt, P. H., Venkatesan, T. and Lovinger, A. J., Appl. Phys. Lett. 41, 708 (1082).Google Scholar
11. Rao, G. R., Lee, E. H., Yao, X. and Brown, I. G., J. Mater. Sci. 30, 708 (1995).Google Scholar
12. Schalek, R., Hlavacek, M. and Grummon, D. S., Mat. Res. Symp. Proc. 236, 335 (1992).Google Scholar
13. Loh, I. H., Klausner, M., Kendall, R. F. and Baddour, R. E. and Cohen, R. E., Polym. Eng. Sci. 27, 861 (1987).Google Scholar
14. Amouroux, J., Kryszewski, M., Rakowski, W., Okoniewski, M. and Kubacki, Z., Polymer 19, 908 (1978).Google Scholar
15. Clark, D. T., and Dilks, A., J. Polym. Sci. 17, 957 (1979).Google Scholar
16. Koh, S. K., Pae, K. D., Stoffel, N.G. and Hart, D.L., Polym. Eng. Sci. 30, 137 (1990).Google Scholar
17. Choi, W. K., Koh, S. K., and Jung, H. J., J. Vac. Sci. Technol. A14, 2366 (1996).Google Scholar
18. Youxian, D., Griesser, H. J., Mau, A. W. H., and Schmit, R., Polymer 32, 1126 (1991).Google Scholar
19. Owens, D. K. and Wendt, R. C., J. Appl. Polym. Sci. 13, 1741 (1969).Google Scholar
20. Fakes, D. W., Newton, J. M., Watts, J. F. and Edgell, M. J., Surf. Inter. Anal. 10, 416 (1987).Google Scholar
21. Yamada, Y., Yamada, T., Tasaka, S., and Inagaki, N., Macromolecules, 29, 4331 (1996).Google Scholar
22. Hdllander, A., Behnisch, J., Zimmermann, H., J. Appl. Polym. Sci. 49, 1857 (1993).Google Scholar
23. Briggs, D., Rance, D. G., Kendall, C. R. and Blythe, A. R., Polymer, 21, 895 (1980).Google Scholar
24. Koh, S. K., Song, S. K., Choi, W. K., and Jung, H. J., J. Mater. Res., 10, 2390 (1995).Google Scholar
25. Grant, J. L., Dunn, D. S., and McClure, D. J., J. Vac. Sci. Technol. A6, 2213 (1988).Google Scholar
26. Briggs, D., Rance, D. G., Kendall, C. R., and Blythe, A. R., Polymer 21, 895 (1980).Google Scholar
27. Fowkes, F. M., J. Phys. Chem. 66, 382 (1962).Google Scholar
28. Wrobei, A. M., Kryszeski, M., Okoniewski, M., and Kubacki, B. Z., Polymer 19, 908, (1978).Google Scholar