Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T10:06:53.475Z Has data issue: false hasContentIssue false

Surface Reactions During the Deposition of Ge from Chemical Sources on Ge(100)-(2×1)

Published online by Cambridge University Press:  03 September 2012

C. Michael Greenlief
Affiliation:
University of Missouri-Columbia, Department of Chemistry, Columbia, MO 65211, chemcmg@showme.missouri.edu
Jihong Chen
Affiliation:
University of Cincinnati, Department of Electrical and Computer Engineering, Cincinnati, OH 45221-0030
Get access

Abstract

The adsorption and decomposition of diethylgermane, triethylgermane, and digermane on the Ge(100) surface are investigated with the intent of elucidating the surface processes leading to the deposition of epitaxial Ge films. Room temperature adsorption of diethylgermane or triethylgermane leads to the formation of surface germanium hydrides and ethyl groups. The ethyl groups decompose at higher temperatures and form ethylene via a β-hydride elimination reaction. Isotopic labeling experiments are used to confirm this reaction step. This is in contrast to the Si(100) surface where both α- and β-hydride elimination is observed for the decomposition of surface ethyl groups. The adsorption and reaction of digermane with the Ge surface is also determined to help provide a comparison with the ethylgermanes. Low energy electron diffraction is used to evaluate the quality of the deposited germanium films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Green, M. L., Brasen, D., Temkin, H., Yadvish, R. D., Boone, T., Feldman, L. C., Geva, M., and Spear, B. E., Thin Solid Films 184,107 (1990).Google Scholar
2 Iyer, S. S., Patton, G. L., Stork, J. M. C., Meyerson, B. S., and Harame, D. L., IEEE Trans. Electron. Dev. 36, 2043 (1989).Google Scholar
3 Iyer, S. S., Patton, G. L., Harame, D. L., Stork, J. M. C., Crabbé, E. F., and Meyerson, B. S., Thin Solid Films 184,153 (1990).Google Scholar
4 Pearsall, T. P., CRC Crit. Rev. Solid State Mater. Sci. 15, 551 (1989).Google Scholar
5 Welser, J., Hoyt, J. L., and Gibbons, J. F., Jap. J. Appl. Phys. Pt. 1 33, 2419 (1994).Google Scholar
6 Werner et al, K., J. Crys. Growth 164, 223 (1996).Google Scholar
7 Zhou, G. L., and Morkoç, H., Thin Solid Films 231,125 (1993).Google Scholar
8 Agnello, P. D., Sedgwick, T. O., Goorsky, M. S., Ott, J., Kuan, T. S., and Scilla, G., Appl. Phys. Lett. 59,1479 (1991).Google Scholar
9 Cao, M., Wang, A. W., and Saraswat, K. C., Proc. Electrochem. Soc. 93–6, 350 (1993)Google Scholar
10 Dutartre, D., Warren, P., Berbezier, I., and Perret, P., Thin Solid Films 222, 52 (1992)Google Scholar
11 Garone, P. M., Strum, J. C., and Schwartz, P. V., Appl. Phys. Lett. 56, 1275 (1990)Google Scholar
12 Jang, S. M., and Reif, R., Appl. Phys. Lett. 59, 3162 (1991)Google Scholar
13 Kamins, T. I., and Meyer, D. J., Appl. Phys. Lett. 59, 178 (1991)Google Scholar
14 Kühne, H., Morgenstern, T., Zaumseil, P., Krüger, D., Bugiel, E., and Ritter, G., Thin Solid Films 222, 34 (1992)Google Scholar
15 Meyerson, B. S., Uram, K. J., and LeGoues, F. K., Appl. Phys. Lett. 53, 2555 (1988)Google Scholar
16 Racanelli, M., and Greve, D. W., Appl. Phys. Lett. 56, 2524 (1990)Google Scholar
17 Robbins, D. J., Glasper, J. L., Cullis, A. G., and Leong, W. Y., J. Appl. Phys. 69, 3729 (1991)Google Scholar
18 Sedgwick, T. O., and Agnello, P. D., J. Vac. Sci. Technol. A 10, 1913 (1992)Google Scholar
19 Suemitsu, M., Hirose, F., and Miyamoto, N., J. Crys. Growth 107, 1015 (1991)Google Scholar
20 Zhong, Y., Öztürk, M. C., Grider, D. T., Wortman, J. J., and Littlejohn, M. A., Appl. Phys. Lett. 57, 2092 (1990)Google Scholar
21 Mahajan, A., Kellerman, B. K., Russell, N. M., Banerjee, S., Campion, A., Ekerdt, J. G., Tasch, A., White, J. M., and Bonser, D. J., J. Vac. Sci. Technol. A 12, 2265 (1994)Google Scholar
22 Coon, P. A., Wise, M. L., Dillon, A. C., and George, S. M., Johnson, R. I., Anderson, G.B., Fork, D.K., Ready, S.E., Mater. Res. Soc. Symp. Proc. 282, 413 (1993)Google Scholar
23 Dillon, A. C., Robinson, M. B., and George, S. M., Surf. Sci. 286, L535 (1993)Google Scholar
24 Coon, P. A., Wise, M. L., and George, S. M., J. Chem. Phys. 98, 7485 (1993)Google Scholar
25 Coon, P. A., Wise, M. L., Walker, Z. H., George, S. M., and Roberts, D. A., Appl. Phys.Lett. 60, 2002 (1992)Google Scholar
26 Greenlief, C. M., Klug, D.-A., and Keeling, L. A., Mater. Res. Soc. Symp. Proc. 282, 427 (1993)Google Scholar
27 Takahashi, Y., Ishii, H., and Fujinaga, K., J. Electrochem. Soc. 136, 1826 (1989)Google Scholar
28 Du, W., Keeling, L. A., and Greenlief, C. M., J. Vac. Sci. Technol. A 12, 2281 (1994)Google Scholar
29 Keeling, L. A., Ph.D., University of Missouri (1995)Google Scholar
30 Mahajan, A., Kellerman, B. K., Heitzinger, J. M., Banerjee, S., Tasch, A., White, J. M., and Ekerdt, J. G., J. Vac. Sci. Technol. A 13, 1461 (1995)Google Scholar
31 Klug, D.-A., and Greenlief, C. M., J. Vac. Sci. Technol. A 14, 1826 (1996)Google Scholar
32 Keeling, L. A., Chen, L., Greenlief, C. M., Mahajan, A., and Bonser, D., Chem. Phys. Lett. 217, 136 (1994)Google Scholar
33 Chen, J., and Greenlief, C. M., J. Vac. Sci. Technol. A, submitted.Google Scholar
34 Cohen, S. M., Yang, Y. L., Rouchouze, E., Jin, T., and D'Evelyn, M. P., J. Vac. Sci. Technol. A 10, 2166 (1992)Google Scholar
35 D'Evelyn, M. P., Cohen, S. M., Rouchouze, E., and Yang, Y. L., J. Chem. Phys. 98, 3560 (1993)Google Scholar
36 D'Evelyn, M. P., Yang, Y. L., and Cohen, S. M., J. Chem. Phys. 101, 2463 (1994)Google Scholar
37 Lewis, L. B., Segall, J., and Janda, K. C., J. Chem. Phys. 102, 7222 (1995)Google Scholar
38 Surnev, L., and Tikhov, M., Surf. Sci. 138, 40 (1984)Google Scholar