Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T03:58:28.586Z Has data issue: false hasContentIssue false

Surfaces and Interfaces for Controlled Defect Engineering

Published online by Cambridge University Press:  01 February 2011

Edmund G. Seebauer*
Affiliation:
eseebaue@uiuc.edu, University of Illinois, Chemical & Biomolecular Engineering, 600 S Mathews Ave, 114 RAL, Box c3, Urbana, IL, 61801, United States, 217-244-9214
Get access

Abstract

The behavior of point defects within silicon can be changed significantly by controlling the chemical state at the surface. In ultrashallow junction applications for integrated circuits, such effects can be exploited to reduce transient enhanced diffusion, increase dopant activation, and reduce end-of-range damage.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Seebauer, E. G., Dev, K., Jung, M. Y. L., Vaidyanathan, R., Kwok, C. T. M., Ager, J. W., Haller, E. E., and Braatz, R. D., Phys. Rev. Lett., 97, 055053 (2006).Google Scholar
2. Zhang, X., Yu, M., Kwok, C. T. M., Vaidyanathan, R., Braatz, R. D., and Seebauer, E. G., Phys. Rev. B 74, 235301 (2006).Google Scholar
3. Dev, K., Jung, M. Y. L., Gunawan, R., Braatz, R. D. and Seebauer, E. G., Phys. Rev. B, 68, 195311 (2003).Google Scholar
4. Dev, K. and Seebauer, E. G., Surface Sci., 550, 185 (2004).Google Scholar
5. Jung, M. Y. L., Gunawan, R., Braatz, R. D. and Seebauer, E. G., J. Appl. Phys., 95, 1134 (2004).Google Scholar
6. Gossman, H.-J., Rafferty, C. S., Unterwald, F. C., Boone, T., Mogi, T. K., Thompsom, M. O., and Luftman, H. S., Appl. Phys. Lett. 67, 1558 (1995).Google Scholar
7. Duffy, R., Venezia, V. C., Heringa, A., Hüsken, T. W. T. and Hopstaken, M. J. P., Cowern, N. E. B., Griffin, P. B., and Wang, C. C., Appl. Phys. Lett. 82, 21 (2003).Google Scholar
8. Wang, H. C. H., Wang, C. C., Chang, C. S., Wang, T., Griffin, P. B., and Diaz, C. H., IEEE Electron Device Lett. 22, 65 (2001).Google Scholar
9. Stolk, P., Gossmann, H.-J., Eaglesham, D., Jacobson, D., Rafferty, C., Gilmer, G., Jaraiz, M., Poate, J., Luftman, H., and Haynes, T., J. Appl. Phys. 81, 6031 (1997).Google Scholar
10. Cowern, N., Janssen, K., and Jos, H., J. Appl. Phys. 68, 6191 (1990).Google Scholar
11. Jung, M. Y. L., Gunawan, R., Braatz, R. D. and Seebauer, E. G., J. Electrochem. Soc., 150, (2003) G838.Google Scholar
12. Vaidyanathan, R., Graoui, H., Foad, M. and Seebauer, E. G., Appl. Phys. Lett. 89 (2006) 152114.Google Scholar
13. Yeong, S. H., Srinivasan, M. P., Colombeau, B. and Chan, Lap, Akkipeddi, Ramam, Kwok, C. T. M., Vaidyanathan, R., and Seebauer, E. G., Appl. Phys. Lett., 91 (2007) 102112.Google Scholar
14. Gunawan, R., Jung, M. Y. L., Seebauer, E. G. and Braatz, R. D., AIChE J. 49, 2114 (2003).Google Scholar
15.See Mark Law, http://www.swamp.tec.ufl.edu/Google Scholar
16. Jung, M. Y. L., Gunawan, R., Braatz, R. D. and Seebauer, E. G., AIChE J. 50, 3248 (2004).Google Scholar
17. Gunawan, R., Jung, M. Y. L., Braatz, R. D., and Seebauer, E. G., J. Electrochem. Soc. 150, G758 (2003).Google Scholar