Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T10:05:08.170Z Has data issue: false hasContentIssue false

Switchable Microcrystallization Near Threshold in Laser Annealing of GeSe2 Glass and Evaporated Films

Published online by Cambridge University Press:  15 February 2011

J. C. Phillips*
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974, USA
Get access

Abstract

Just below threshold for irreversible macrocrystallization there may exist a narrow energy (or power) density region where microcrystallites are formed. In the case of Si and GaAs this region lies just above the threshold for melting and the microcrystallites are formed irreversibly. In the case of GeSe2 when Urbach tail laser energy is used just below the macrocrystallization threshold the photons selectively replace like-atom bonds with chemically ordered bonds, and microcrystallization can be thermally reversed in melt-quenched glass at temperatures as low as Tg/2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Van Vechten, J. A., Tsu, R. and Seriss, E. W., Phys. Lett. 74A, 422 (1979).CrossRefGoogle Scholar
2. Auston, D. H., Surko, C. M., Venkatesan, T. N. C., Slusher, R. E. and Golovchenko, J. A., Appl. Phys. Lett. 33, 437 (1978);CrossRefGoogle Scholar
Lowndes, D. H., Jellison, G. E. Jr., and Wood, R. F. (this meeting);Google Scholar
Compaan, A., Aydinli, A., Lo, H. W. and Lee, M. C. (this meeting).Google Scholar
3. Morhange, J. F., Kanellis, G., and Balkanski, M., Sol. St. Comm. 31, 805 (1979).CrossRefGoogle Scholar
4. Morhange, J. F., Kanellis, G. and Balkanski, M., J. Phys. Soc. Jap. 49, Suppl. A. 1295 (1980).Google Scholar
5. Veprek, S., Iqbal, Z., Oswald, H. R., Sarott, F. A., Wagner, J. J. and Webb, A. P., Sol. State Comm. 39, 509 (1981).Google Scholar
6. Yen, R., Liu, J., Kurz, H. and Bloembergen, N., this conference.Google Scholar
7. Chen, C. H. and Tai, K. L., Appl. Phys. Lett. 37, 1075 (1981).Google Scholar
8. Nemanich, R. J., Connell, G. A. N., Hayes, T. M., and Street, R. A., Phys. Rev. B18, 6900 (1978).Google Scholar
9. Hajtό, J., Zentai, G., and Kosa-Somogyi, I., Sol. State Comm. 23, 401 (1977).Google Scholar
10. Hajtό, J. and Apai, P., J. Non-Cryst. Sol. 35–36, 1085 (1980).Google Scholar
11. Suzuki, M., Okano, S., Nagaoka, H. and Hata, T., J. Non-Cryst. Sol. 35–36, 1067 (1980).CrossRefGoogle Scholar
12. Griffiths, J. E., Espinosa, G. P., Remeika, J. P. and Phillips, J. C., Sol. State Comm. (in press); Phys. Rev. B (in press).Google Scholar
13. Phillips, J. C., J. Appl. Phys. (in press).Google Scholar