Published online by Cambridge University Press: 10 February 2011
α-Alumina films are useful for high-temperature, wear, and semiconductor device applications because of their good oxidation resistance, high hardness values, and electrical properties. α-Alumina films have been previously synthesized using techniques such as chemical vapor deposition, sol-gel, physical vapor deposition, and plasma spraying. This paper presents an alternative approach for producing high quality dense α-alumina coatings using a flame-assisted process called combustion chemical vapor deposition (CCVD). This process is an open atmosphere technique that does not require the use of a reaction chamber. In this work alumina films were grown on YSZ at temperatures ranging from 900 to 1500°C. At lower temperatures only amorphous alumina was grown, but as the deposition temperature increased different alumina phases were formed. At 1100°C, a thin highly crystalline θ-Al2O3 coating was formed. At temperatures higher than 1100°C thick θ-Al2O3 coatings were deposited on the YSZ. Coatings were characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD).