Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T01:22:24.042Z Has data issue: false hasContentIssue false

Synthesis and characterization of combinatorial libraries of semiconductor gas sensors.

Published online by Cambridge University Press:  01 February 2011

M. A. Aronova
Affiliation:
Small Smart Systems Center, Department of Material Science and Engineering, and Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, Maryland 20742
K. S. Chang
Affiliation:
Small Smart Systems Center, Department of Material Science and Engineering, and Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, Maryland 20742
I. Takeuchi
Affiliation:
Small Smart Systems Center, Department of Material Science and Engineering, and Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, Maryland 20742
H. Jabs
Affiliation:
Lynntech, Inc., College Station, Texas 77840
D. Westerheim
Affiliation:
Lynntech, Inc., College Station, Texas 77840
A. Gonzalez-Martin
Affiliation:
Lynntech, Inc., College Station, Texas 77840
J. Kim
Affiliation:
Lynntech, Inc., College Station, Texas 77840
B. Lewis
Affiliation:
Lynntech, Inc., College Station, Texas 77840
Get access

Abstract

We have fabricated thin-film combinatorial gas sensor libraries based on doped semiconducting SnO2 thin films. The utility of combinatorial libraries is two-fold: one is to search and optimize the compositions for high sensitivity and selectivity of gases, and the other is to make use of the natural array geometry of the libraries with different sensor elements for electronic noses. Combinatorial pulsed-laser ablation was used to deposit compositionally varying arrays of sensor elements onto a pre-patterned device electrode configuration. Using a multiplexing electronics, we have demonstrated detection of chloroform, formaldehyde, and benzene gases at concentrations down to 12.5 ppm through pattern recognition of signals from the arrays of sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Watson, J., Sens. Actuators B 5, 29 (1984).Google Scholar
2. Yamazoe, N., Sens. Actuators B 5, 7 (1991).Google Scholar
3. Kohl, D., Sens. and Sens. Sys. for an Electronic Noses, 53 (1992).Google Scholar
4. Lalauze, R., Pijolat, C., Vincent, S. and Bruno, L., Sens. Actuators B 8, 237 (1992).Google Scholar
5. Shimizu, Y., Egashira, M., MRS Bulletin 24, 18 (1999).Google Scholar
6. Watson, J., Ihokura, K., MRS Bulletin 14, 18 (1999).Google Scholar
7. Hammond, J., Marquis, B., Michaels, R., Oickle, B., Segee, B., Vetelino, J., Bushway, A., Camire, M. E., D-Dentici, K., Sens. Actuators B 84, 113 (2002).Google Scholar
8. Dewettinck, T., Van Hege, K. and Verstraete, W., Water Research., 35, 2475 (2001).Google Scholar
9. Ethrmann, S., Jungst, J., Goschnick, J., Everhard, D., Sens. Actuators B 65, 247 (2000).Google Scholar
10. Bruno, L., Pijolat, C., Lalauze, R., Sens. Actuators B 18–19, 195 (1994).Google Scholar
11. Xu, C., Tamaki, J., Miura, N., Yamazoe, N., Sens. Actuators B 3, 147 (1991).Google Scholar
12. Panchapakesan, B., DeVoe, D. L., Widmaier, M. R., Cavicchi, R., Semancik, S., Nanotech. 12, 336 (2001).Google Scholar
13. Gaggiotti, G., Galdikas, A., Kaciulis, S., Mattogno, G., Setkus, A., J. Appl. Phys. 76, 4467 (1994).Google Scholar
14. Cheong, H-W., Choi, J-J., Kim, H. P., Kim, J-M, Kim, J., Churn, G-S., Sens. Actuators B 9, 227 (1992).Google Scholar
15. Yasukawa, Y., Seki, T., Muramatsu, J-I., Sugie, S., Tasaka, S., Inagaki, N., Sens. Actuators B 13–14, 613 (1993).Google Scholar
16. Akiyama, M., Tamai, J., Miura, N., Yamazoe, N., Chem. Lett., 1611 (1991).Google Scholar
17. Inoue, T., Ohtsuka, K., Yoshida, Y., Matsuura, Y., Jajiyama, Y., Sens. Actuators B 24–25, 388 (1995).Google Scholar
18. Nomura, T., Amamoto, T., Mastsuura, Y., Jajiyama, Y., Sens. Actuators B 13–14, 486 (1993).Google Scholar
19. De Angelis, L., Minnaja, N., Sens. Actuators B 3, 197 (1991).Google Scholar
20. Coles, G. S. V., Williams, G., Smith, B., Sens. Actuators B 3, 7 (1991).Google Scholar
21. Takeuchi, I., van Dover, R. B., Koinuma, H., MRS Bulletin 27, 301 (2002).Google Scholar
22. Tiffany, J., Cavicchi, R. E., Semancik, S., Proc. SPIE 4205, 40 (2000).Google Scholar
23. Gardner, J. W., Barlett, P. N., Sens. Actuators B 18–19, 211 (1994).Google Scholar
24. Dickinson, T. A., White, J., Kauer, J. S., Walt, D.R., Tibtech 16, 250 (1998).Google Scholar
25. Horrillo, M. C., Getino, J., Ares, L., Robla, J. I., Sayago, I., Gutierrez, F.J., J. Electrochem. Soc. 145, 2486 (1998).Google Scholar
26. Stitzel, S. E., Cowen, L. J., Albert, K. J., Walt, D. R., Anal. Chem. 73, 5266 (2001)Google Scholar
27. Bicego, M., Tessari, G., Tecchiolli, G., Bettinelli, M., Sens. Actuators B 85, 137 (2002)Google Scholar
28. Namdev, P. K., Alroy, Y., Singh, V., Biotechnol. Prog. 14, 75 (1998)Google Scholar
29. Nagle, H.T., Gutierrrez-Osuna, R., Schiffman, S. S., IEEE Spec., (1998).Google Scholar
30. Goschnick, J., Micro. Engin. 57–58, 693 (2001).Google Scholar
31. Chang, K-S., Aronova, M. A., Famodu, O., Takeuchi, I., Lofland, S. E., Hattrick-Simpers, J., Chang, H., Appl. Phys. Lett, 79, 4411 (2001).Google Scholar
32. Aronova, M. A., Chang, K. S., Takeuchi, I., Jabs, H., Westerheim, D., Gonzalez Martin, A., Kim, J., and Lewis, B., Appl. Phys. Lett, 83, 1255 (2003).Google Scholar