Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T00:34:04.119Z Has data issue: false hasContentIssue false

Synthesis and characterization of Manganese doped ferroxane nanoparticles

Published online by Cambridge University Press:  01 February 2011

Maria M. Cortalezzi
Affiliation:
Department of Civil and Environmental Engineering, Rice University, 6100 Main Street MS-317, Houston, Texas, USA.
Jerome Rose
Affiliation:
Centre Européen de Recherche et d'Enseignement de Géosciences de l'Environnement (CEREGE), UMR 6535 CNRS-Université Aix-Marseille III, Europole de l'arbois - BP 80, 13545 AIX-EN-PROVENCE CEDEX 4, FRANCE.
Eliza Tsui
Affiliation:
Department of Civil and Environmental Engineering, Rice University, 6100 Main Street MS-317, Houston, Texas, USA.
Andrew R. Barron
Affiliation:
Department of Chemistry, Rice University, 6100 Main Street MS-60, Houston, Texas, USA.
Jean-Yves Bottero
Affiliation:
Centre Européen de Recherche et d'Enseignement de Géosciences de l'Environnement (CEREGE), UMR 6535 CNRS-Université Aix-Marseille III, Europole de l'arbois - BP 80, 13545 AIX-EN-PROVENCE CEDEX 4, FRANCE.
Mark Wiesner
Affiliation:
Department of Civil and Environmental Engineering, Rice University, 6100 Main Street MS-317, Houston, Texas, USA.
Get access

Abstract

Ferroxane nanoparticles are precursors to iron oxide ceramic porous membranes. The ferroxane-derived ceramics have an average pore size of 24 nm and a surface area of 80 m2/g. Previous work has shown that these membranes have a molecular weight cut off of 180,000 dalton and their permeability is comparable to commercially available membranes. The ferroxane nanoparticles were reacted with manganese acetyl acetonate and then applied to the fabrication of mixed metal oxides. The nanoparticles were dried to form a ceramic chip. Upon sintering, asymmetric mixed metal oxide ceramic membranes were obtained. The materials were characterized by EXAFS, EDAX imaging and IDX mapping. EXAFS showed that the atomic environment of the iron and dopant material was different from those in the initial compounds, thus confirming that the reaction took place. The concentration of dopant metal was between 7% and 10%, with uniform concentration throughout the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Rose, J., Cortalezzi, M. M., Moustier, S., Magnetto, C., Jones, C. D., Barron, A. R., Wiesner, M. R., Bottero, J.-Y. Chemistry of Materials 2002, 14, 621628.Google Scholar
2) Cortalezzi, M. M., Rose, J., Wells, G., Bottero, J.Y., Barron, A., Wiesner, M. Journal of Membrane Science 2003.Google Scholar
3) Chou, S., Huang, C. Chemosphere 1999, 38, 27192731.Google Scholar
4) Valentine, R., Wang, H. Journal of Environmental Engineering 1998, 3138.Google Scholar
5) Wells, G. 2003.Google Scholar
6) Sekita, M., Haneda, H., Yanagitani, T., Shirasaki, S. Journal of Applied Physics 1990, 67, 453458.Google Scholar
7) Warshaw, I., Roy, R. Journal of the American Ceramic Society 1959, 42, 434438.Google Scholar
8) Cinibulk, M. Journal of Material Research 1995, 10, 7176.Google Scholar
9) Callender, R. L.; Harlan, C. J.; Shapiro, N. M.; Jones, C. D.; Callahan, D. L.; Wiesner, M. R.; MacQueen, D. B.; Cook, R.; Barron, A. R. Chemistry of Materials 1997, 9, 24182433.Google Scholar
10) Callender, R. L., Barron, A. R. Journal of the American Ceramic Society 2000, 83, 17771789.Google Scholar
11) Bailey, D. A., Jones, C. D., Barron, A. R., Wiesner, M. R. Journal of Membrane Science 2000, 176, 19.Google Scholar
12) Pintar, A., Levec, J. Chamical Engineering Science 1992, 47, 23952400.Google Scholar
13) Cho, C., Ihm, S. Environmental Science and Technology 2002, 36, 16001606.Google Scholar
14) O'Connell, M., Morris, M. Catalysis Today 2000, 59, 387393.Google Scholar
15) Zhu, W., Bin, Y., Li, Z., Jiang, Z., Yin, T. Water Research 2002, 36, 19471954.Google Scholar
16) Michalowicz, A. EXAFS pour le Mac; Chimie, S. F. d., Ed.: Paris, 1991, pp 102103.Google Scholar
17) Michalowicz, A. Journal of Physics IV France 1997, 7, C2235.Google Scholar
18) Teo, B. K. EXAFS: basic principles and data analysis; Springer-Verlag: New York, 1986.Google Scholar