Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-14T19:27:52.767Z Has data issue: false hasContentIssue false

Synthesis and Characterization of PMMA Coated Magnetite Nanocomposites by Emulsion Polymerization

Published online by Cambridge University Press:  26 February 2011

Ming Zhang
Affiliation:
mzhang@uno.edu, Advanced Materials Research Institute, Chemistry, 2000 Lakeshore Dr, New Orleans, LA, 70148, United States, 504-280-1383
Charles J O'Connor
Affiliation:
coconnor@uno.edu, University of New Orleans, Chemistry/AMRI, New Orleans, LA, 70148, United States
Get access

Abstract

In this paper, we report the synthesis and characterization of the PMMA-coated magnetite nanocomposite obtained from the emulsion polymerization method. In this approach, the magnetite particles were prepared separately with oleic acid as the capping ligands in nonaqueous solution and disperse in non-polar solvent. The micells structure consisting water, oil phase and surfactant will contain the oleic acid stabilized magnetite particles inside and the polymerization process will only occur on the surface of the emulsion system. This method allows the individual magnetic particles encapsulated in the polymer matrix. The resulting nanocomposites were characterized by TGA, XRD and SQUID

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tartaj, P.; Serna, C. J. J. Am. Chem. Soc. 125, 1575415755 (2003)10.1021/ja0380594Google Scholar
2. Tartaj, P.; Morales, M. P.; Gonzalez-Carreno, T.; Veintemills-Verdaguer, S.; Serna, C. T. J. Magn. Magn. Mater. 290–291, 2834 (2005)10.1016/j.jmmm.2004.11.155Google Scholar
3. Willner, I.; Katz, E. Angew. Chem., Int. Ed., 43, 60426108 (2004)Google Scholar
4. Meldrum, F. C.; Heywood, B. R.; Mann, S. Science 257, 522523 (1992)10.1126/science.1636086Google Scholar
5. Kim, D.K., Mikhaylova, M., Zhang, Y. & Muhammed, M., Chem. Mater. 15, 16171627 (2003)Google Scholar
6. Sun, S.; Zeng, H. J. Am. Chem. Soc. 124(28); 82048205 (2002)10.1021/ja026501xGoogle Scholar
7. Hyeon, T. Chem. Commun., 927930 (2003)10.1039/b207789bGoogle Scholar
8. Caruntu, D., Caruntu, G., Chen, Y., Goloverda, G., O_Connor, C.J., Kolesnichenko, V., Chem. Mater. 16, 55275534 (2004).10.1021/cm0487977Google Scholar
9. Kang, N.; Perron, M.-E.; Prud'homme, R. E.; Zhang, Y.; Gaucher, G.; Leroux, J.-C. Nano Lett.; (Letter); 5(2); 315319 (2005)10.1021/nl048037vGoogle Scholar
10. Huang, X.; Brittain, W. J. Macromolecules; (Article); 34(10); 32553260 (2001).10.1021/ma001670sGoogle Scholar
11. Zhang, Q.; Xu, T.; Butterfield, D.; Misner, M. J.; Ryu, D. Y.; Emrick, T.; Russell, T. P. Nano Lett.; (Letter); 5(2); 357361(2005)10.1021/nl048103tGoogle Scholar
12. Guo, Q., Rahman, S., Teng, X. & Yang, H.J.. J. Am. Chem. Soc. 125, 630631, (2003)10.1021/ja0275764Google Scholar
13. Wang, Y.; Teng, X.; Wang, J.-S.; Yang, H. Nano Lett.; (Letter); 3(6); 789793. (2003)10.1021/nl034211oGoogle Scholar