Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T14:14:50.779Z Has data issue: false hasContentIssue false

Synthesis and Processing of Nanocrystalline Ge:Si Materials

Published online by Cambridge University Press:  21 February 2011

Shih-Tung Ngiam
Affiliation:
Department of Chemical Engineering
Klavs F. Jensen
Affiliation:
Department of Chemical Engineering Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge MA 02139, USA
K. D. Kolenbrander
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge MA 02139, USA
Get access

Abstract

Crystalline nanometer-scale Ge particles have been synthesized by pulsed laser ablation and introduced into a Si host matrix, grown by chemical beam epitaxy from disilane. The proposed structure of the Ge:Si composite films consists of Ge nanocrystals surrounded by a thin epitaxial Si shell that passivates the surface of the Ge nanocrystallite. The Ge nanocrystallites are randomly oriented with respect to each other and are randomly distributed in a polycrystalline or amorphous Si matrix. Ge nanoparticles with and without Si matrix were deposited directly on C-coated TEM grid and imaged by high resolution TEM. Ge:Si composites deposited on Si wafers were characterized by RBS.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Corcoran, E., Sci. Am. 263 (Nov), 122 (1990).Google Scholar
2 Steigerwald, M. L. and Brus, L. E., Annu, . Rev. Mater. Sci. 19, 471 (1989).Google Scholar
3 Heath, J. R., Science 258, 1131 (1992).Google Scholar
4 Heath, J. R. and LeGoues, F. K., Chem. Phys. Lett. 208, 263 (1993).Google Scholar
5 Kanemitsu, Y., Uto, H., Masumoto, Y., and Maeda, Y., Appl. Phys. Lett. 61,2187 (1992).Google Scholar
6 Liu, W. S., Chen, J. S., Nicolet, M.-A., Arbet-Engels, V., and Wang, K. L., Appl. Phys. Lett. 62, 3321 (1993)Google Scholar
7 Duncan, M. A. and Rouvray, D. H., Sci. Am. 261(Dec), 110 (1989).Google Scholar
8 Chiu, L. A., Séraphin, A. A. and Kolenbrander, K. D., J. Electronic Materials (accepted for publication).Google Scholar
8 Chiu, L. A., Séraphin, A. A. and Kolenbrander, K. D., These proceedings.Google Scholar
9 Hirayama, H.T., Tatsumi, T., Aizaki, N., Appl. Phys. Lett. 52, 1484 (1988).Google Scholar
10 Gates, S. M. and Kulkarni, S. K., Appl. Phys. Lett. 58, 2963 (1991).Google Scholar
11 Meyerson, B. S., Uram, K. J., and LeGoues, F. K., Appl. Phys. Lett. 53, 2555 (1988)Google Scholar
12 Kamins, T. I. and Meyer, D. J., Appl. Phys. Lett. 61, 90 (1992).Google Scholar
13 Surnev, L. and Tikhov, M., Surf. Sci. 138, 40 (1984).Google Scholar
14 Ning, B. M. H. and Crowell, J. E., Appl. Phys. Lett. 60, 2914 (1992).Google Scholar
15 Hopkins, J. B., Langridge-Smith, P. R. R., Morse, M. D., and Smalley, R. E., J. Chem. Phys. 78, 1627 (1983).Google Scholar
16 Werwa, E., Séraphin, A. A., Chiu, L. A., Zhou, C., and Kolenbrander, K. D., (submitted to Appl. Phys. Lett.).Google Scholar