No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Incorporation of ligands and metals into polymers by controlled methods yields multifunctional responsive materials. Dibenzoylmethane (dbm) is a beta-diketone ligand that binds metal and metalloid ions such as boron, iron or europium in a bidentate fashion producing complexes with one or more dbm chelates. Modification of dbm with biocompatible poly(lactic acid) (PLA) allows materials processing and leads to responsive metallobiomaterials. This is accomplished by modification of dbm with hydroxyl groups (e.g. dbmOH), that serve as initiators for lactide polymerization. Improved control is noted when dbm is protected as iron or boron complexes, namely Fe(dbmOH)3 or BF2(dbmOH). Furthermore, the iron center in iron tris(dbmOH) also functions as a catalyst for the polymerization; no tin catalyst is required. Redorange iron-centered three arm star polymers, Fe tris(dbmPLA), are obtained. Acid sensitivity of these materials provides a method for dbm ligand dissociation, demetalation and production of dbmPLA macroligands for coordination to other metals such as Eu. Currently, dbmPLA and its polymeric iron complexes are being fabricated as nanoparticles. Light emitting B and Eu dbm complexes are also under investigation. Progress in the synthesis, characterization and nanoscale fabrication of dbm ligand and metal based polymeric biomaterials is reported.