Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-02T21:26:28.935Z Has data issue: false hasContentIssue false

Synthesis and Responsive Properties of Dibenzoylmethane Metallobiomaterials

Published online by Cambridge University Press:  01 February 2011

Cassandra L. Fraser
Affiliation:
fraser@virginia.edu, University of Virginia, Chemistry, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904-4319, United States, 434-924-7998
Jianbin Chen
Affiliation:
jc9km@virginia.edu, University of Virginia, Chemistry, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904-4319, United States
Anne Pfister
Affiliation:
apfister@virginia.edu, University of Virginia, Chemistry, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904-4319, United States
Guoqing Zhang
Affiliation:
gz6m@virginia.edu, University of Virginia, Chemistry, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904-4319, United States
Yin Jie Chen
Affiliation:
yjc4u@virginia.edu, University of Virginia, Chemistry, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904-4319, United States
Get access

Abstract

Incorporation of ligands and metals into polymers by controlled methods yields multifunctional responsive materials. Dibenzoylmethane (dbm) is a beta-diketone ligand that binds metal and metalloid ions such as boron, iron or europium in a bidentate fashion producing complexes with one or more dbm chelates. Modification of dbm with biocompatible poly(lactic acid) (PLA) allows materials processing and leads to responsive metallobiomaterials. This is accomplished by modification of dbm with hydroxyl groups (e.g. dbmOH), that serve as initiators for lactide polymerization. Improved control is noted when dbm is protected as iron or boron complexes, namely Fe(dbmOH)3 or BF2(dbmOH). Furthermore, the iron center in iron tris(dbmOH) also functions as a catalyst for the polymerization; no tin catalyst is required. Redorange iron-centered three arm star polymers, Fe tris(dbmPLA), are obtained. Acid sensitivity of these materials provides a method for dbm ligand dissociation, demetalation and production of dbmPLA macroligands for coordination to other metals such as Eu. Currently, dbmPLA and its polymeric iron complexes are being fabricated as nanoparticles. Light emitting B and Eu dbm complexes are also under investigation. Progress in the synthesis, characterization and nanoscale fabrication of dbm ligand and metal based polymeric biomaterials is reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Manners, Ian, Synthetic Metal-containing Polymers (Wiley VCH, Weinheim, 2004).Google Scholar
2. Nogueira, M. A., Magalhães, E. G., Magalhães, A. F., Biloti, D. N., Laverde, A. Jr., Pessine, B. T., Carvalho, J. E., Kohn, L. K., Antônio, M. A., Marsaioli, A. J., Il Farmaco 58, 1163 (2003).Google Scholar
3. Huang, M.-T., Lou, Y.-R., Xie, J. G., Ma, W., Lu, Y.-P., Zhu, B. T., Newmark, H., Ho, C.-T., Carcinogenesis 19, 1697 (1998).Google Scholar
4. Shishu, S. A. K., Kaur, I. P., Phytomedicine 10, 575 (2003).Google Scholar
5. Jackson, K. M., DeLeon, M., Verret, C. R., Harris, W. B., Cancer Lett. 178, 161 (2002).Google Scholar
6. Lin, C.-C., Tasi, Y.-L., Huang, M.-T., Lu, Y.-P., Ho, C.-T., Tseng, S.-F., Teng, S.-C., Carcinogenesis 27, 131 (2006).Google Scholar
7. Dechy-Cabaret, O., Martin-Vaca, B., Bourissou, D., Chem. Rev. 104, 6147 (2004).Google Scholar
8. Vink, E. T. H., Rábago, K. R., Glassner, D. A., Gruber, P. R., Poly. Deg. Stab. 80, 403 (2003).Google Scholar
9. Griffith, L. G., Acta Mater. 48, 263 (2000).Google Scholar
10. Nanoparticles: (a) Panyam, J., Labhasetwar, V., Curr. Drug Deliv. 1, 235 (2004). (b) M. L. T. Zweers, D. W. Grijpma, G. H. M. Engbers, J. Feijen, J. Biomed. Mater. Res. B: Appl. Biomater. 66B, 559 (2003). Films: (c) A. C. R. Grayson, G. Voskerician, A. Lynn, J. M. Anderson, M. J. Cima, R. Langer, J. Biomater. Sci. Polymer Ed. 15, 1281 (2004). Fibers: (d) B. B. Crow, A. F. Bomeman, D. L. Hawkins, G. M. Smith, K. D. Nelson, Tissue Eng. 11, 1077 (2005).Google Scholar
11. For e.g., see: (a) Lee, C. C., MacKay, J. A., Fréchet, J. M. J., Szoka, F. C., Nature Biotech. 23, 1517 (2005). (b) S. Liang, D. T. Pierce, C. Amiot, X. Zhao, Synth. React. Inorg. Met. Org. Chem. 35, 661 (2005). (c) R. S. Lief, L. M. Vallarino, M. C. Becker, S. Yang, Cytometry 69, 767 (2006). (d) I. Hemmilä, V. Laitala, J. Fluoresc. 15, 529 (2005).Google Scholar
12. Bender, J. L., Corbin, P. S., Metcalf, D. H., Richardson, F. S., Thomas, E. L., Urbas, A. M., J. Am. Chem. Soc. 124, 8526 (2002).Google Scholar
13. Gorczynski, J. L., Chen, J., Fraser, C. L., J. Am. Chem. Soc. 127, 14956 (2005).Google Scholar
14. Chen, J., Gorczynski, J. L., Fraser, C. L., Manuscript in preparation.Google Scholar
15. Zhang, G., Chen, J., Payne, S. J., Demas, J. N., Fraser, C. L., Manuscript in preparation.Google Scholar
16. Yoon, J., Chen, J., Gorczynski, J. L., Thomas, E. L., Fraser, C. L., Manuscript in preparation.Google Scholar
17. Farokhzad, O., Jon, S., Khademhosseini, A., Tran, T.-N. T., LaVan, D. A., Langer, R., Cancer Res. 64, 7668 (2004).Google Scholar
18. McCarthy, J. R., Perez, J. M., Bruckner, C., Weissleder, R., Nano Lett. 5, 2552 (2005).Google Scholar