Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T06:31:20.341Z Has data issue: false hasContentIssue false

Synthesis and Structural Characterization of Ferromagnetic Au/Co Nanoparticles

Published online by Cambridge University Press:  03 June 2014

Nabraj Bhattarai*
Affiliation:
Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
Subarna Khanal
Affiliation:
Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
Daniel Bahena
Affiliation:
Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
Robert L. Whetten
Affiliation:
Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
Miguel Jose-Yacaman
Affiliation:
Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
Get access

Abstract

The synthesis of bimetallic magnetic nanoparticles is very challenging because of the agglomeration and non-uniform size. In this paper, we present the synthesis of monodispersed 3-5 nm sized thiolated bimetallic alloyed Au/Co nanoparticles with decahedral and icosahedral shape, their characterization using Cs-corrected scanning transmission electron microscopy (STEM) and magnetic measurements using superconducting quantum interference device (SQUID) magnetometer. The Z-contrast imaging and energy dispersive X-ray spectroscopy (EDS) mapping showed an inhomogeneous alloying with minor segregation between Au and Co at nanoscale and the SQUID measurement exhibited the ferromagnetic behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Moghimi, S.M., Hunter, A.C. and Murray, J.C.: Long-Circulating and Target-Specific Nanoparticles: Theory to Practice. Pharmacological Reviews 53, 283 (2001).Google ScholarPubMed
Lu, A.-H., Schmidt, W., Matoussevitch, N., Bönnemann, H., Spliethoff, B., Tesche, B., Bill, E., Kiefer, W. and Schüth, F.: Nanoengineering of a Magnetically Separable Hydrogenation Catalyst. Angewandte Chemie International Edition 43, 4303 (2004).CrossRefGoogle ScholarPubMed
Gao, J., Gu, H. and Xu, B.: Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications. Accounts of Chemical Research 42, 1097 (2009).CrossRefGoogle ScholarPubMed
Lu, Z., Prouty, M.D., Guo, Z., Golub, V.O., Kumar, C.S.S.R. and Lvov, Y.M.: Magnetic Switch of Permeability for Polyelectrolyte Microcapsules Embedded with Nanoparticles. Langmuir 21, 2042 (2005).CrossRefGoogle Scholar
Bao, Y. and Krishnan, K.M.: Preparation of functionalized and gold-coated cobalt nanocrystals for biomedical applications. Journal of magnetism and magnetic materials 293, 15 (2005).CrossRefGoogle Scholar
Mayoral, A., Mejia-Rosales, S., Mariscal, M.M., Perez-Tijerina, E. and Jose-Yacaman, M.: The Co-Au interface in bimetallic nanoparticles: a high resolution STEM study. Nanoscale 2, 2647 (2010).CrossRefGoogle ScholarPubMed
Rapallo, A., Olmos-Asar, J.A., Oviedo, O.A., Ludueña, M., Ferrando, R. and Mariscal, M.M.: Thermal Properties of Co/Au Nanoalloys and Comparison of Different Computer Simulation Techniques. The Journal of Physical Chemistry C 116, 17210 (2012).CrossRefGoogle Scholar
Oviedo, O., Leiva, E. and Mariscal, M.: Diffusion mechanisms taking place at the early stages of cobalt deposition on Au (111). Journal of Physics: Condensed Matter 20, 265010 (2008).Google Scholar
Mariscal, M., Olmos-Asar, J., Gutierrez-Wing, C., Mayoral, A. and Yacaman, M.: On the atomic structure of thiol-protected gold nanoparticles: a combined experimental and theoretical study. Physical Chemistry Chemical Physics 12, 11785 (2010).CrossRefGoogle ScholarPubMed
Frenkel, A., Nemzer, S., Pister, I., Soussan, L., Harris, T., Sun, Y. and Rafailovich, M.: Size-controlled synthesis and characterization of thiol-stabilized gold nanoparticles. The Journal of chemical physics 123, 184701 (2005).CrossRefGoogle ScholarPubMed
Bhattarai, N., Casillas, G., Ponce, A. and Jose-Yacaman, M.: Strain-release mechanisms in bimetallic core-shell nanoparticles as revealed by Cs-corrected STEM. Surface Science (2012).Google Scholar
Bhattarai, N., Casillas, G., Khanal, S., Salazar, J.J.V., Ponce, A. and Jose-Yacaman, M.: Origin and shape evolution of core–shell nanoparticles in Au–Pd: from few atoms to high Miller index facets. Journal of Nanoparticle Research 15, 1 (2013).CrossRefGoogle Scholar
Khanal, S., Bhattarai, N., Velazquez-Salazar, J.J., Bahena, D., Soldano, G., Ponce, A., Mariscal, M.M., Mejia-Rosales, S. and Jose-Yacaman, M.: Trimetallic nanostructures: the case of AgPd-Pt multiply twinned nanoparticles. Nanoscale 5, 12456 (2013).CrossRefGoogle ScholarPubMed
Khanal, S., Casillas, G., Velazquez-Salazar, J.J., Ponce, A. and Jose-Yacaman, M.: Atomic Resolution Imaging of Polyhedral PtPd Core–Shell Nanoparticles by Cs-Corrected STEM. The Journal of Physical Chemistry C 116, 23596 (2012).CrossRefGoogle ScholarPubMed
Khanal, S., Casillas, G., Bhattarai, N., Velázquez-Salazar, J.J., Santiago, U., Ponce, A., Mejía-Rosales, S. and José-Yacamán, M.: CuS2-Passivated Au-Core, Au3Cu-Shell Nanoparticles Analyzed by Atomistic-Resolution Cs-Corrected STEM. Langmuir 29, 9231 (2013).CrossRefGoogle ScholarPubMed
Brust, M., Schiffrin, D.J., Bethell, D. and Kiely, C.J.: Novel gold-dithiol nano-networks with non-metallic electronic properties. Advanced materials 7, 795 (1995).CrossRefGoogle Scholar
Bhattarai, N., Casillas, G., Khanal, S., Bahena, D., Velazquez-Salazar, J.J., Mejia, S., Ponce, A., Dravid, V.P., Whetten, R.L. and Mariscal, M.M.: Structure and composition of Au/Co magneto-plasmonic nanoparticles. MRS Communications 3, 177 (2013).CrossRefGoogle Scholar
Bahena, D., Bhattarai, N., Santiago, U., Tlahuice, A., Ponce, A., Bach, S.B.H., Yoon, B., Whetten, R.L., Landman, U. and Jose-Yacaman, M.: STEM Electron Diffraction and High-Resolution Images Used in the Determination of the Crystal Structure of the Au144(SR)60 Cluster. The Journal of Physical Chemistry Letters 4, 975 (2013).CrossRefGoogle ScholarPubMed
Walsh, M.J., Yoshida, K., Kuwabara, A., Pay, M.L., Gai, P.L. and Boyes, E.D.: On the Structural Origin of the Catalytic Properties of Inherently Strained Ultrasmall Decahedral Gold Nanoparticles. Nano letters 12, 2027 (2012).CrossRefGoogle ScholarPubMed
Patala, S., Marks, L.D. and Olvera de la Cruz, M.: Elastic Strain Energy Effects in Faceted Decahedral Nanoparticles. The Journal of Physical Chemistry C 117, 1485 (2013).CrossRefGoogle Scholar