Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-04T03:28:28.525Z Has data issue: false hasContentIssue false

Synthesis and Thermoelectric Properties of Y-doped Ca3Co4O9 Ceramics

Published online by Cambridge University Press:  01 February 2011

Julio E. Rodriguez
Affiliation:
jerodriguezl@unal.edu.co, Universidad Nacional de Colombia, Department of Physics, Apartado Aereo 85814, Bogota, 01, Colombia, +57 1 3165000 X13021, +57 1 3165135
Luis Carlos Moreno
Affiliation:
jerodriguezl@gmail.com, Universidad Nacional de Colombia, Department of Chemistry, Bogota, Colombia
Get access

Abstract

Polycrystalline ceramics with nominal composition of Ca3-xYxCo4O9+δ (0≤x≤0.10) were grown using the citrate-complex method. Thermoelectric properties were studied using Seebeck coefficient S(T) and electrical resistivity ρ(T) measurements. These transport properties were studied in the temperature range between 100 and 290K. For low doping levels in Y substituted samples (x≤0.06) the magnitude of S(T) and ρ(T) decreases with yttrium content. The temperature behavior of S(T) and ρ(T) was interpreted in terms of the small-polaron hopping mechanism. From S(T) and ρ(T) data it was possible to calculate the thermoelectric power factor PF, which reaches maximum values close to 23 μW/K2-cm. These values become these compounds promissory thermoelectric compounds for use in low temperature thermoelectric applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rowe, D. M. CRC Handbook of thermoelectrics, CRC Press, Boca Raton Fl, 1995, Chap. 30.Google Scholar
2 Nolas, G. S. Sharp, J. and Goldsmid, H. J. Thermoelectrics, basic principles and new materials developments, Springer-Verlag, Berlin, 2001.Google Scholar
3 Mahan, G. Sales, B. and Sharp, J. Physics Today, 50, 42 (1997).Google Scholar
4 Yamanaka, S. H. Kobayashi and Kurosaki, K. Alloys, J.J. Comp. 349, 321324 (2003).Google Scholar
5 Li, S. Funahashi, R. Matsubara, I. Yamada, H. Ueno, K. and Ikebe, M., Ceramics International, 27, 321324 (2001).Google Scholar
6 Sudhakar, E. Noudem, J.G. Hebert, S. and Goupil, C. J.Phys. D: Appl. Phys. 38, 37513755 (2005).Google Scholar
7 Moreno, L.C. D. Cadavid and Rodriguez, J. E. Microelectronics Journal, 39, 548550 (2008).Google Scholar
8 Casset, A.C. Michel, C. Maignan, A. Hervieu, M. Toulemonde, O. Studer, F. and Raveau, B. Phys. Rev. B 62, 166 (2000).Google Scholar
9 Tani, T. Itahara, H. Xia, C. and Sugiyama, J. J. Matter. Chem. 13, 1865 (2003).Google Scholar
10 Li, S.W. Funahashi, R. Matsubara, I. Ueno, K. Sodeoka, S. and Yamada, H. Chem. Matter. 12, 2424 (2000).Google Scholar
11 Zhang, Y. F. Zhang, J. X. Lu, Q. M. and Zhang, Q. Y. Materials Letters, 60, 24432446 (2006).Google Scholar
12 Rowe, D. M. Rowe, D. M. CRC Handbook of thermoelectrics, CRC Press, Boca Raton Fl, 1995, Chap.3.Google Scholar
13 Liu, H.Q. Song, Y. Zhang, S.N. Zhao, X.B. and Wang, F.P. J. Phys and Chem. Sol. 70, 600603 (2009).Google Scholar
14 Noguch, S. Sekimoto, T. and Ishida, T. J. Phys.: Condens Matter, 16, S5769 (2004).Google Scholar
15 Wang, Y. Sui, Y. Cheng, J. Wang, X. Su, W. Liu, X. and Fan, H.F. J. Phys. Chem. C 114 (11), 51745181 (2010).Google Scholar
16 Kwak, J.F. Phys. Rev. B 13, 652657 (1976).Google Scholar
17 Chaikim, P.M. and Beni, G. Phys. Rev. B 13, 647651 (1976).Google Scholar
18 Mott, N.F. and Davis, E.A. Electronic Processes in non-crystalline materials, Claredon Press, Oxford, 1979.Google Scholar
19 Lien, N.V. and Toi, D.D. Phys. Lett. A 261, 108113 (1999).Google Scholar