Published online by Cambridge University Press: 01 February 2011
Polycrystalline ceramics with nominal composition of Ca3-xYxCo4O9+δ (0≤x≤0.10) were grown using the citrate-complex method. Thermoelectric properties were studied using Seebeck coefficient S(T) and electrical resistivity ρ(T) measurements. These transport properties were studied in the temperature range between 100 and 290K. For low doping levels in Y substituted samples (x≤0.06) the magnitude of S(T) and ρ(T) decreases with yttrium content. The temperature behavior of S(T) and ρ(T) was interpreted in terms of the small-polaron hopping mechanism. From S(T) and ρ(T) data it was possible to calculate the thermoelectric power factor PF, which reaches maximum values close to 23 μW/K2-cm. These values become these compounds promissory thermoelectric compounds for use in low temperature thermoelectric applications.