Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T09:44:06.215Z Has data issue: false hasContentIssue false

Synthesis, Characterization and Evaluation of Zinc-Amides as Potential Dopant Sources for ZnSe OMVPE

Published online by Cambridge University Press:  22 February 2011

William S. Rees Jr
Affiliation:
Department of Chemistry and Materials Research and Technology Center, The Florida State University, Tallahassee, Florida 32306–3006, U.S.A.
David M. Green
Affiliation:
Department of Chemistry and Materials Research and Technology Center, The Florida State University, Tallahassee, Florida 32306–3006, U.S.A.
Werner Hesse
Affiliation:
Department of Chemistry and Materials Research and Technology Center, The Florida State University, Tallahassee, Florida 32306–3006, U.S.A.
Timothy J. Anderson
Affiliation:
Department of Chemical Engineering and MICROFABRITECH, The University of Florida, Gainesville, Florida 32611–2022, U.S.A.
Balu Pathangey
Affiliation:
Department of Chemical Engineering and MICROFABRITECH, The University of Florida, Gainesville, Florida 32611–2022, U.S.A.
Get access

Abstract

Compounds of the general forms Zn[N(R)2]2, Zn(N(R)(R')2] and Zn{[N(R)2][N(R')2]} have been prepared, these new compositions have been characterized by multinuclear NMR, GC/MS, FTIR, elemental analysis and single crystal x-ray diffraction, and they have been evaluated for their potentialto serve as “designer dopants” in the epitaxial growth of p-type ZnSe. Retention of the Zn-N bond during deposition should insure selective location of the nitrogen atom on the native selenium lattice site. Precursor vapor pressures, vapor phase decomposition mechanisms, and thin film properties are presented. Results from materials characterization by XRD, SIMS, PL, Raman and SEM are presented in the context of evaluating dopantlevel.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rees, W. S. Jr, Anderson, T. J., Green, D. M. and Bretschneider, E. in “Wide Band-Gap Semiconductors,” Moustakas, T. M., Pankove, J. I. and Hamakawa, Y., Eds., Materials Research Society Proceedings, Volume 242, Materials Research Society: Pittsburgh, Pennsylvania, 1992, pp. 281286.Google Scholar
2. Rees, W. S. Jr, Green, D. M., Anderson, T. J., Bretschneider, E., Pathangey, B. and Kim, J. J. Electronic Materials, 1992, in the press.Google Scholar
3. Bürger, H., Sawodny, W. and Wannagat, U. J. Organomet. Chem., 1965, 3, 113.Google Scholar
4. Rees, W. S. Jr, Green, D. M. and Hesse, W. Polyhedron, 1992, 11, 16671669.Google Scholar
5. a. Nakanishi, K., Suemune, I., Fujii, Y., Kuroda, Y. and Yamanishi, M. Appl. Phys. Lett. 1991, 59, 1401.Google Scholar
b. Zmudzinski, C. A., Guan, Y. and Zory, P. S. IEEE Photon. Technol. Lett., 1990, 2, 94.Google Scholar
c. Haase, M. A., Qiv, J., DePuydt, J. M. and Cheng, H. Appl. Phys. Lett., 1991, 59, 12721274.Google Scholar
d. Qiv, J., DePuydt, J. M., Cheng, H. and Haase, M. A. Appl. Phys. Lett., 1991, 59, 19921994.Google Scholar
e. Haase, M. A., Cheng, H., Misemer, D. K., Strand, T. A. and DePuydt, J. M. Appl. Phys. Lett., 1991, 59, 32283229.Google Scholar
f. Jeon, H., Ding, J., Patterson, W., Nurmikiko, A. V., Xie, W., Grilla, D. C., Kobayashi, M. and Gunshor, R. L. Appl. Phys. Lett, 1991, 36193621.Google Scholar
6. Stringfellow, G. B. Organometallic Vapor-Phase Epitaxy: Theory and Practice: Academic Press, New York, 1989, 398 pp.Google Scholar
7. Lappert, M. F., Power, P. P., Sanger, A. R. and Srivastava, R. C. Metal and Metalloid Amides, Ellis Horwood: Chichester, England, 1980; pp. 545566.Google Scholar
8. Elemental analysis for Zn[{N[(Si(CH3)3]}{N{Si(CH3)3)3}2}]: calc. for C13H36N2Si3Zn: 42.2%C, 9.7%H, 7.6%N; found: 42.1%C, 9.6%H, 7.4%N.Google Scholar
9. Suemune, I., Yamada, K., Masato, H., Kando, T., Kan, Y. and Yamanishi, M. Japan. J. Appl. Phys., 1988, 27, L2195.Google Scholar
10. Park, R. M., Troffer, M. B., Yablonovitch, E. and Gmitter, T. J. Appl. Phys. Lett., 1991, 59, 18961898.Google Scholar
11. Huheey, J. E. Inorganic Chemistry: Principles of Structure and Reactivity, 2nd Ed., Harper and Row: New York; 1978, 889 pp.Google Scholar
12. Anderson, T. J., Bretschneider, E. and Pathangey, B., unpublished results.Google Scholar
13. Rees, W. S. Jr, Luten, H. A., Carris, M. W., Doskocil, E. J. and Goedken, V. L. in “Better Ceramics Through Chemistry V,” Hampden-Smith, M. J., Klemperer, W. G. and Brinker, C.J., Eds., Materials Research Society Proceedings, Volume 271; Materials Research Society: Pittsburgh, Pennsylvania, 1992, pp. 14147.Google Scholar
14. Green, D. M., thesis, M.S., Florida Staie University, in preparation, 1992.Google Scholar
15. Elschenbroich, C. and Salzer, A. Organometallics: A Concise Introduction, 2nd Ed., VCH: New York 1992, 495 pp.Google Scholar