Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T23:14:30.821Z Has data issue: false hasContentIssue false

Synthesis, Layer Assembly, And Fluorescence Dynamics Of Poly (Phenylenevinylene) Oligomer Phosphonates

Published online by Cambridge University Press:  16 February 2011

H. E. Katz
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974.
S. F. Shane
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974.
W. L. Wilson
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974.
M. L. Schilling
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974.
S. B. Ungashe
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974.
Get access

Abstract

The title oligomers have been incorporated in Zr-based layers on quartz substrates. Absorbance and emission spectra and fluorescence decays have been measured on these films and compared with data from solutions, powders, and PPV. The samples may be divided into those with “liquid-like” behavior and “solid-like” behavior; the latter is characterized by blue-shifted absorbance, red-shifted emission, and more complex decay dynamics than the former. By these criteria, the layers and PPV itself are decidedly “solid-like’.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., MacKag, K., Friend, R. H., Burn, P. L. and Holmes, A. B., Nature, 1990, 347, 539.Google Scholar
2. Brown, A. R., Greenham, N. C., Burroughes, J. H., Bradley, D. D.C., Friend, R. H., Burn, P. L., Kraft, A. and Holmes, A. B., Chenu Phys. Letu, 1992, 200 46.Google Scholar
3. Tang, C. W. and Van Slyke, S. A., Appl. Phys. Lett. 1987, 57, 913.Google Scholar
4. Friihbeis, H. and Erckel, R., Z. Naturforsch, 1982, 37b, 1472.Google Scholar
5. Kuhl, J., Telle, H., Schieder, R. and Brinkman, U., Opt. Commun. 1978, 24, 48;Google Scholar
Pichat, L., Pesteil, P. and Clement, J., J. Chem. Phys., 1953, 50, 26.Google Scholar
6. Adachi, .C, Tsutsui, A. and Saito, S., Appl. Phys. Lett, 1990, 56 (9), 799. Chishio H. and Tadashi K., European Patent #881202352.Google Scholar
7. Yang, Z., Sokolik, I. and Karasz, F. E., Macromolecules, 1993.Google Scholar
8. Ohlemacher, A., Schenk, R., Weitzel, H. P., Tyutyulkov, N., Tasseva, M. and Müllen, K., Makromol. Chenu, 1992, 193, 81.CrossRefGoogle Scholar
Dretahl, Y. G., Kiihmstedt, R., Oswald, H. and HörholdH, H., Die Makrom, Chemie, 1970, 131, 89.Google Scholar
9. Cao, G., Hong, H. and Mallouk, T. E., Accts. Chem, Res. 1992, 25, 420.Google Scholar
10. Katz, H. E., Scheller, G., Putvinski, T. M., Schilling, M. L., Wilson, W. L. and Chidsey, C. E.D., Science, 1991, 254, 1485.Google Scholar
11. Katz, H. E., Schilling, M. L., Chidsey, C. E.D., Putvinski, T. M. and Hutton, R. S., Chem. Mater 1991, 3 699.CrossRefGoogle Scholar
12. Ungashe, S. D., Wilson, W. L., Katz, H. E., Scheller, , and Putvinski, T. M., J. Am, Chem. Soc., 1992, 114, 8718.Google Scholar
13. Tian, B., Zerbi, G., Schenk, R. and Müllen, K., J. Chem. Phys. 1991, 95 (5) 3191;Google Scholar
Woo, H.S. et al, Synth. Met. 1993, 59, 13.CrossRefGoogle Scholar