No CrossRef data available.
Published online by Cambridge University Press: 20 July 2012
Embedded Si nano-particles of average size around 5nm were synthesized in an amorphous Si matrix by two stage ion implantation processes. It has been observed that amorphous Si (a-Si) layers were recrystallized using 50 MeV Au ions with enhanced regrowth rate with activation energy in the range of 0.29 eV. During the crystallization process Si nanocrystals were formed in the a-Si layers due to sudden quenching of the molten tracks created by MeV Au ions. The recrystalizations were confirmed by Rutherford backscattering spectrometry-Channeling (RBSC) technique. The structural modification and nanocluster creation that emerged during recrystallization process was observed in high-resolution transmission electron microscopy and photoluminescence (PL) spectroscopy. The PL emission was observed over a broad band of 2.8 – 3.4 eV and centered at 3.25 eV. The Si nano-crystal formation can be explain by a mechanism combining the melting within the ion tracks by thermal spike process and the subsequent recrystallization nucleated from the crystalline sides at the interface.