Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T05:58:45.434Z Has data issue: false hasContentIssue false

Synthesis of graphene nanoribbons from amyloid fibrils by solid-phase graphitization using liquid gallium catalyst

Published online by Cambridge University Press:  22 May 2014

Katsuhisa Murakami
Affiliation:
Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan Tsukuba Research Center for Interdisciplinary Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
Tianchen Dong
Affiliation:
Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan Tsukuba Research Center for Interdisciplinary Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
Yuya Kajiwara
Affiliation:
Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan Tsukuba Research Center for Interdisciplinary Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
Takaki Hiyama
Affiliation:
Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
Ryuichi Ueki
Affiliation:
Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan Tsukuba Research Center for Interdisciplinary Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
Gai Ohashi
Affiliation:
Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
Kentaro Shiraki
Affiliation:
Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
Yoichi Yamada
Affiliation:
Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
Jun-ichi Fujita
Affiliation:
Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan Tsukuba Research Center for Interdisciplinary Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
Get access

Abstract

Amyloid fibrils, which are linear proteins with widths of less than 10 nm and lengths of more than 1 μm, were used as an amorphous carbon template for graphene nanoribbons (GNRs) synthesized by solid-phase graphitization using liquid Ga as the catalyst. The crystal quality of the GNRs improved with increasing synthesis temperature. However, the shape of the GNRs synthesized at temperatures higher than 900 °C became broader, losing the original amyloid shape, whereas the GNRs synthesized at 900 °C seemed to maintain the original amyloid shape in the SEM observation. The conducting paths of GNRs synthesized at 900 °C were found to be slightly diffused outside the topography of the GNRs in the conductive atomic force microscopy map. In addition, some of the sapphire terrace edges of the substrate showed conductivity, which indicates that the growth mechanism of graphene on a sapphire substrate might be a step-flow growth mode.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A., Science 306, 666 (2004).CrossRefGoogle Scholar
Nakada, K., Fujita, M., Dresselhaus, G. and Dresselhaus, M. S., Phys. Rev. B 54, 17954 (1996).CrossRefGoogle Scholar
Wakabayashi, K., Fujita, M., Ajiki, H. and Sigrist, M., Phys. Rev. B 59, 8271 (1999).CrossRefGoogle Scholar
Han, M. Y., Özyilmaz, B., Zhang, Y. and Kim, P., Phys. Rev. Lett. 98, 206805 (2007).CrossRefGoogle Scholar
Li, X., Wang, X.. Zhang, L., Lee, S. and Dai, H., Science 319, 1229 (2008).CrossRefGoogle Scholar
Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seisonen, A. P., Saleh, M., Feng, X., Müllen, K. and Fasel, R., Nature 466, 470 (2010).CrossRefGoogle Scholar
Fujita, J., Ueki, R. and Miyazawa, Y., J. Vac. Sci. Technol. B 27, 3063 (2009).CrossRefGoogle Scholar
Fujita, J., Miyazawa, Y., Ueki, R., Sasaki, M. and Saito, T., Jpn. J. Appl. Phys. 49,06GC01 (2010).Google Scholar
Ueki, R., Nishijima, T., Hikata, T., Ookubo, S., Utsunomiya, R., Matsuba, T. and Fujita, J., Jpn. J. Appl. Phys. 51, 06FD28 (2012).CrossRefGoogle Scholar
Fujita, J., Miyazawa, Y. and Ueki, R., J. Vac. Sci. Technol. B 28, C6D1 (2010).CrossRefGoogle Scholar
Fujita, J., Ueki, R., Nishijima, T. and Miyazawa, Y., Microelectron. Eng. 88, 2524 (2011).CrossRefGoogle Scholar