Article contents
Synthesis of Magnetite Particles by Pulsed Alexandrite Laser Processing of Metallic Glass Precursors
Published online by Cambridge University Press: 15 February 2011
Abstract
Samples of Fe78B13Si9 and Fe81B13.5Si3.5C2 metallic glasses were irradiated with a pulsed alexandrite laser (λ=750 nm, τ=60 μs) using different laser fluences. Kinetics of laser-induced phase transformations and fluence dependence of magnetic properties were studied by scanning electron microscopy (SEM) and Mössbauer spectroscopy. Low laser fluences were found to induce changes in magnetic texture and onset of crystallization. High laser fluences, however, correlated with additional oxidation effects and the formation of stoichiometric Fe3O4 particles in the irradiated alloy system. An activation energy of 11.9 eV was estimated for the laser-driven synthesis of magnetite nanoparticles. Pulsed alexandrite laser processing is an intriguing alternative technique for the controlled synthesis of iron oxide phases from ferromagnetic glass precursors.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1996
References
REFERENCE
- 1
- Cited by