Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-13T02:06:10.110Z Has data issue: false hasContentIssue false

Synthesis of Metastable Diamond

Published online by Cambridge University Press:  26 February 2011

Thomas R. Anthony*
Affiliation:
GE Corporate Research and Development, River Road, Schenectady, NY 12309
Get access

Abstract

Diamond can be grown as an equilibrium phase from a liquid metal solution containing carbon at high pressures and high temperatures. Diamond can also be grown as a metastable phase at subatmospheric pressures and moderate temperatures from hydrocarbon gases in the presence of atomic hydrogen. Atomic hydrogen serves several critical roles in CVD diamond growth, namely: 1) stabilization of the diamond surface, 2) reduction of the size of the critical nucleus, 3) “dissolution” of carbon in the gas, 4) production of carbon solubility minimum, 5) generation of condensable carbon radicals in the gas, 6) abstraction of hydrogen from hydrocarbons attached to surface, 7) production of vacant surface sites, 8) etching of graphite, 9) suppression of polycycic aromatic hydrocarbons. A search for substitutes for atomic hydrogen have been unsuccessful to date but several new processes that do not use atomic hydrogen are currently under study.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bent, Henry A., “Second Law of Thermodynamics”, Oxford University Press, New York (1965).Google Scholar
[2] Davies, Gordon, “Diamond”, Adam Hilger Ltd, Bristol (1984).Google Scholar
[3] Bundy, F.P., Hall, H.T, Strong, H.M., and Wentorf, R.H. Jr, Nature, 176, 5154 (1955)Google Scholar
[4] Devries, R.C., Ann Rev Mater Sci, 17, 161187 (1987).Google Scholar
[5] Eversole, W.G., U.S. Patent No. 3030188, Apr 17, 1962.Google Scholar
[6] Angus, J.C., Will, H.A., and Stanko, W.S., J. Appl. Phys, 39, 2915 (1968).Google Scholar
[7] Poferi, D.J., Gardner, N.C. and Angus, J.C., J. Appl. Phys, 44, 1428 (1973).Google Scholar
[8] Spear, K.E., J. Am. Ceramic Soc, 72, 171 (1989).Google Scholar
[9] Spitsyn, B.V., Bouilov, L.L and Deryagin, B.V., J. Cryst. Growth, 52, 219 (1981).Google Scholar
[10] Pate, B.B., Surf. Sci., 165, 83 (1986).Google Scholar
[11] Angus, J.C. and Hayman, C.C., Science, 241, 913 (1988).Google Scholar
[12] Bachman, P.K. and Messier, R., Chem & Eng News, 67, 24 (1989).Google Scholar
[13] Joffreau, P.O., Haubner, R. and Lux, B., J. Ref Hard Metals, 7, 186 (1988).Google Scholar
[14] Lersmacher, B., Lydtin, H., Knippenberg, W.F. and Moore, A.W., Carbon, 5, 205 (1967).Google Scholar
[15] Van Den Hoek, W.J. and Klessens, W., Carbon, 13, 429 (1975).Google Scholar
[16] Chen, Ian, J. Appl. Phys, 64, 3742 (1988).Google Scholar
[17] Harris, S.J., Weiner, A.M. and Perry, T.A., Appl. Phys. Letters, 53, 1605 (1988).Google Scholar
[18] Frenklach, M. and Spear, K.E., J. Mater. Res., 3, 133 (1988).Google Scholar
[19] Hsu, W.L, 34th Nat Symp AVS, TF-WeA1, (November 1987).Google Scholar
[20] Deryagin, B.V. and Fedoseev, D.V., “Growth of Diamond and Graphite from the Vapor Phase”, Izd Nauka., Moscow, USSR, 1977.Google Scholar
[21] Frenklach, M., J. Appl. Phys, 65, 5142 (1989).Google Scholar
[22] Rosner, D.E. and Strakey, J.P., J. Phys. Chem, 77, 690 (1973).Google Scholar
[23] Rosner, D.E. and Allendorf, H.D., J. Phys. Chem, 75, 308 (1971).Google Scholar
[24] Kawato, T. and Kondo, K., J. Appl. Phys., 26, 1429 (1987).Google Scholar
[25] Chang, C.P., Flamm, D. L, Ibbotson, D.E. and Mucha, J., J. Appl. Phys, 63, 1744 (1988).Google Scholar
[26] Saito, Y., Sato, K, Tanaka, H., Fujita, K. and Matsuda, S., J. Mater. Sci, 23, 842 (1986).Google Scholar
[27] Hirose, Y. and Terasawa, Y., Japan J. Appl. Phys, 25, L519 (1986).Google Scholar
[28] Patel, A.R. and Cherian, K.A., Indian Journal of Pure & Appl Phys, 19, 803 (1981).Google Scholar
[29] Brinkman, J.A., Meechan, C.J. and Dieckamp, H.M., US Patent #3,142,539 (1964).Google Scholar
[30] Brinkman, J.A., Meechan, C.J. and Dieckamp, H.M., US Patent #3,175,885 (1965).Google Scholar
[31] Rudder, R.A., Posthill, J.B., Hudson, G.C., Mantini, M.J. and Markunas, R.J., 1989 Diamond Technology Initiative Symposium, Paper W16, (July 11-13, 1989).Google Scholar