Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T03:24:52.641Z Has data issue: false hasContentIssue false

Synthesis of nanostructured metal (Fe, Al)-C60 composites

Published online by Cambridge University Press:  01 February 2011

I. I. Santana García
Affiliation:
ESFM, Instituto Politécnico Nacional, Edif. 9 UPALM D.F. 07738, México
V. Garibay Febles
Affiliation:
LMEUAR, Instituto Mexicano del Petróleo, México D.F. 07730, México
H. A. Calderon
Affiliation:
ESFM, Instituto Politécnico Nacional, Edif. 9 UPALM D.F. 07738, México
Get access

Abstract

Composites of M-2.5 mol. % Fullerene C60 composites (where M= Fe or Al) are prepared by mechanical milling and Spark Plasma Sintering (SPS). The SPS technique has been used to consolidate the resulting powders and preserve the massive nanostructure. Results of X-Ray Diffraction and Raman Spectroscopy show that larger milling balls (9.6 mm in diameter) produce transformation of the fullerene phase during mechanical milling. Alternatively smaller milling balls (4.9 mm in diameter) allow retention of the fullerene phase. SEM shows homogeneous powders with different particle sizes depending on milling times. Sintering produces nanostructured composite materials with different reinforcing phases including C60 fullerenes, diamonds and metal carbides. The presence of each phase depends characteristically on the energy input during milling. Transmission Electron Microscopy (TEM) and Raman Spectroscopy show evidence of the spatial distribution and nature of phases. Diamonds and carbides can be identified for the sintered Fe containing composites with a relatively high volume fraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Robles-Hernández, F. C. and Calderon, H.A., JOM, 62–02, 6368 (2010).Google Scholar
[2] García, I. I. Santana, M. Sc. Thesis, Instituto Politécnico Nacional, 2010.Google Scholar
[3] Garibay-Febles, V., Calderon, H.A, Hernández, F. C. Robles, Umemoto, M., Masuyama, K. and Moreno, J. G. Cabañas; Mat. & Man. Proc., 15–4, 547567 (2000).Google Scholar
[4] He, Q., Jia, C., Meng, J., Mat. Scie. Eng. A 428, 314318(2006).Google Scholar
[5] Koch, C. C. and Whittenberg, J. D.., Inter. Comp., 4, 339355 (1995).Google Scholar
[6] Lu, L. and Lai, M. On in, “Mechanical Alloying”, edited by Kluwer Academic Publishers, USA, (1998), 1–3; 17; 2365.Google Scholar
[7] Surinarayama, C. in, Mechanical Alloying and Milling, edited by Marcel Dekker Pub., USA, (2004), pp. 1117.Google Scholar
[8] Tokita, M., J. Soc. Pow. Tech. Japan, 30–11, 790804 (1993).Google Scholar
[9] Chen, W., Anselmi-Tamburini, U., Garay, J.E., et al., Mater. Sci. Eng. A-394, 132 (2005).Google Scholar
[10] ICDD (International Center of Diffraction Data) Identification 79–1479; 26–1075.Google Scholar
[11] Tuinstra, F., and Koenig, J. L., J. Chem. Phys., 53, 1126 (1970).Google Scholar
[12] Khalid, F.A., Beffort, O., Klotz, U.E., Keller, B.A., Gasser, P., Diam Rel. Mat., 13, 393400 (2004).Google Scholar