Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T01:19:22.519Z Has data issue: false hasContentIssue false

Synthesis of Superparamagnetic Magnesium Ferrite Nanoparticles by Microwave-Hydrothermal Method

Published online by Cambridge University Press:  21 March 2011

Seema Verma
Affiliation:
Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008, India
Hari S. Potdar
Affiliation:
Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008, India
Sadgopal K. Date
Affiliation:
Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008, India
Pattayil A. Joy*
Affiliation:
Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008, India
*
Corresponding author. E-mail: joy@dalton.ncl.res.in
Get access

Abstract

Superparamagnetic magnesium ferrite, MgFe2O4, nanoparticles were synthesized under mild microwave hydrothermal (MH) conditions. Transmission electron microscopic studies showed that the average particle size of the ferrite obtained is ∼3 nm, with a narrow size distribution. Temperature dependent AC magnetic susceptibility measurements at 2 Oe showed characteristic feature of superparamagnetism with blocking temperature, TB, at 47 K. TB decreases with increasing DC magnetic field as evidenced by zero-field-cooled susceptibility studies at 50 and 500 Oe (TB = 38 and 27 K respectively). As a typical superparamagnetic behavior, the zero-field- cooled and the field-cooled magnetizations diverge below TB. Magnetic hysteresis behavior is observed below TB, with a high coercivity of 185 Oe at 12 K, and magnetic hysteresis behavior disappears when measured above TB. The results indicate that MH method is highly suitable for the synthesis of superparamagnetic ferrite nanoparticles of uniform size distribution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, Z. L., Liu, Y., and Zhang, Z., Handbook of Nanophase and Nanostructured Materials, Vol. 3 (Kluwer Academic/Plenum Publishers, New York, 2003).Google Scholar
2. Sugimoto, M., J. Am. Ceram. Soc. 82, 269 (1999).Google Scholar
3. Busca, G., Finocchio, E., Lorenzelli, V., Trombetta, M., and Rossini, S. A., J. Chem. Soc., Faraday Trans. 92, 4687 (1996).Google Scholar
4. Shimizu, Y., Arai, H. and Seiyama, T., Sensors Actuators 7, 11 (1985).Google Scholar
5. Maehara, T., Konishi, K., Kamimori, T., Aono, H., Naohara, T., Kikkawa, H., Watanabe, Y., and Kawachi, K., Jpn. J. Appl. Phys. 41, 1620 (2002).Google Scholar
6. Dawson, W. J., Ceram. Bull. 67, 1673 (1988).Google Scholar
7. Komarneni, S., Fregeau, E., Breval, E., and Roy, R., J. Am. Ceram. Soc. 71, C26 (1988).Google Scholar
8. Gabriel, C., Gabriel, S., Grant, E. H., Halstead, B. S. J., and Mingos, D. M. P., Chem. Soc. Rev. 27, 213 (1998).Google Scholar
9. Komarneni, S., Li, Q., Stefansson, K. M. and Roy, R., J. Mater. Res. 8, 3176 (1993).Google Scholar
10. Komarneni, S., D'Arrigo, M. C., Leonelli, C., Pellacani, G. C., and Katsuki, H., J. Am. Ceram. Soc. 81, 3041 (1998).Google Scholar
11. Kim, C-K., Lee, J-H, Katoh, S., Murakami, R., and Yoshimura, M., Mater. Res. Bull. 36, 2241 (2001).Google Scholar
12. Verma, S., Joy, P. A., Khollam, Y. B., Potdar, H. S., and Deshpande, S. B., Mater. Lett. 58, 1092 (2004).Google Scholar
13. Liu, C., Zou, B., Rondinone, A. J., and Zhang, Z. J., J. Am. Chem. Soc. 122, 6263 (2000).Google Scholar
14. Chen, Q., Rondinone, A. J., Chakoumakos, B. C., and Zhang, Z. J., J. Magn. Magn. Mater. 194, 1 (1999).Google Scholar
15. Cullity, B. D., Introduction to Magnetic Materials (Reading, Addison-Wesley Publishing, 1972).Google Scholar
16. Folen, V. J. and Rado, G. T., J. Appl. Phys. 29, 438 (1958).Google Scholar