Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-14T05:15:30.099Z Has data issue: false hasContentIssue false

Synthesis of Thin Films of Size Selected Silicon Nanocrystallites Using Pulsed Laser Ablation Supersonic

Published online by Cambridge University Press:  15 February 2011

E. Werwa
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, werwa@mit.edu, kdk@mit.edu
K.D. Kolenbrander
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, werwa@mit.edu, kdk@mit.edu
Get access

Abstract

Thin films composed of size selected silicon nanocrystallites have been fabricated and their photoluminescence behavior has been studied. The silicon nanocrystallites were produced using a pulsed laser ablation supersonic expansion source. This source typically generates silicon clusters of many different sizes, which leads to photoluminescence spectra with a large fiill width at half maximum. To best utilize our gas phase synthesis technique, we have performed size selection of the silicon clusters using a mechanical velocity selection apparatus. Films of these size selected nanocrystallites exhibited photoluminescence spectra which had a smaller full width at half maximum and which were peaked to the blue of the spectra of samples with a broader size distribution. These results suggest that the photoluminescence wavelength of these nanocrystallite thin films is determined by quantum confinement of the electrons and holes in the crystallites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1 Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2 Brus, L., Hirose, M., Collins, R.W., Koch, F., and Tsai, C.C., eds. Microcrystalline and Nanocrystalline Semiconductors. Mater. Res. Soc. Proc. 358, (Materials Research Society, Pittsburgh, PA, 1995) pp. xixxxiii and numerous articles therein.Google Scholar
3 Fauchet, P. M., Ettedgui, E., Raisanen, A., Brillson, L. J., Seiferth, F., Kurinec, S. K., Gao, Y., Peng, C., and Tsybeskov, L. in Silicon-Based Optoelectronic Materials, edited by Collins, R.T., Tischler, M.A., Abstreiter, G., and Thewalt, M.L. (Mater. Res. Soc. Proc. 298, Pittsburgh, PA, 1993) pp. 271276.Google Scholar
4 Koch, F., Petrova-Koch, V., and Muschik, T., J. Lumin. 57, 271 (1993).Google Scholar
5 Kanemitsu, Y., Phys. Rev. B 49, 16845 (1994).Google Scholar
6 Brus, L.E., Szajowski, P.F., Wilson, W.L., Harris, T.D., Schuppler, S., and Citrin, P.H., J. Am. Chem. Soc. 117, 2915 (1995).Google Scholar
7 Nash, K. J., Calcott, P. D. J., Canham, L.T., Kane, M.J., and Brumhead, D., J. Lumin. 60&61, 297 (1994).Google Scholar
8 Takagahara, T. and Takeda, K., Phys. Rev. B 46, 15578 (1992).Google Scholar
9 Wang, L.-W. and Zunger, A., J. Phys. Chem. 98, 2158 (1994).Google Scholar
10 Hill, N. A. and Whaley, K. B., Appl. Phys. Lett. 67, 1125 (1995).Google Scholar
11 Delley, B. and Steigermeier, E.F., Appl. Phys. Lett. 67, 2370 (1995).Google Scholar
12 Delerue, C., Allan, G., and Lannoo, M., Phys. Rev. B 48, 11024 (1993).Google Scholar
13 Ito, K., Ohyama, S., Uehara, Y., and Ushioda, S., Appl. Phys. Lett. 67, 2536 (1995).Google Scholar
14 Joshkin, V.A., Naidenkov, M.N., Pavlenko, V.N., Kvit, A.V., and Oktyabrsky, S.R., Phys. Rev. B 52, 12102 (1995).Google Scholar
15 Littau, K.A., Szajowski, P.J., Muller, A.J., Kortan, A.R., and Brus, L.E., J. Phys. Chem. 97, 1224 (1993).Google Scholar
16 Ngiam, S.-T., Jensen, K.F., and Kolenbrander, K.D., J. Appl. Phys. 76, 8201 (1994).Google Scholar
17 Chiu, L.A., Seraphin, A. A., and Kolenbrander, K.D., J. Electron. Mater. 23, 347 (1994).Google Scholar
18 Powers, D.E., Hansen, S.G., Geusic, M.E., Pulu, A.C., Hopkins, J.B., Dietz, T.G., Duncan, M. A., Langridge-Smithe, P.R.R., and Smalley, RE., J. Phys. Chem. 86, 2556 (1982).Google Scholar
19 Werwa, E., Seraphin, A.A., Chiu, L.A., Zhou, C., and Kolenbrander, K.D., Appl. Phys. Lett. 64, 1821 (1994).Google Scholar
20 DePaul, S., Pullman, D., and Friedrich, B., J. Phys. Chem. 97, 2167 (1993).Google Scholar
21 Oswald, J., Pastrnak, J., Hospodkova, A., and Pangrac, J., Solid State Comm. 89, 297 (1994).Google Scholar
22 Seraphin, A.A. and Kolenbrander, K.D. in Surface/Interface and Stress Effects in Electronic Material Nanostructures. edited by Prokes, S.M., Wang, K.L., Cammarata, R.C., and Christou, A., (Mater. Res. Soc. Proc. 405, Pittsburgh, PA, 1996).Google Scholar