Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-13T02:14:12.115Z Has data issue: false hasContentIssue false

Temperature Dependence of the Mcxd at the GD Lm Edge

Published online by Cambridge University Press:  15 February 2011

K. J. Gofrono
Affiliation:
Physics Department, Northern Illinois University, DeKalb, IL 60115 Materials Science Divisiton, Argonne National Laboratory, Argonne, IL 60439
C. W. Kimball
Affiliation:
Physics Department, Northern Illinois University, DeKalb, IL 60115 Materials Science Divisiton, Argonne National Laboratory, Argonne, IL 60439
P. L. Lee
Affiliation:
Materials Science Divisiton, Argonne National Laboratory, Argonne, IL 60439
G. Jennings
Affiliation:
Materials Science Divisiton, Argonne National Laboratory, Argonne, IL 60439
P. A. Montano
Affiliation:
Materials Science Divisiton, Argonne National Laboratory, Argonne, IL 60439 Physics Department, University of Illinois at Chicago, Chicago, IL 60680
Get access

Abstract

An energy dispersive spectrometer is used to measure the temperature dependence of the Magnetic Circular X-ray Dichroism (MCXD) effect at the gadolinium (Gd metal) LIII absorption edge from 94 K to 335 K. In ferromagnetic Gd, the MCXD spectrum consists of the main positive peak with pre- and post-edge features. Only the main positive peak exhibits a temperature dependence similar to that of Gd magnetization. All other features decrease as the temperature increases and vanish slightly above the transition temperature (293 K). Well above the ordering temperature (paramagnetic Gd), the MCXD consists only of the positive peak, with a post-edge background that slowly decays away from it over a range of 90 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schutz, G., Wagner, W., Wilhelm, W., Kienle, P., Zeller, R., Frahm, R., and Materlik, G., Phys. Rev. Lett. 58, 737 (1987).Google Scholar
2. Thole, B. T., Carra, P., Sette, F., and Laan, G. van der, Phys. Rev. Lett. 68, 1943 (1992).Google Scholar
3. Carra, P., Thole, B. T., Altarelli, M., and Wang, X., Phys. Rev. Lett. 70, 649 (1993).Google Scholar
4. Lee, P. L., Beno, M. A., Jennings, G., Ramanathan, M., Knapp, G. S., Huang, K., Bai, J., and Montano, P. A., Rev. Sci. Instrum. 65 (1), (1994).Google Scholar
5. Schutz, G., Knulle, M., Wienke, R., Wilhelm, W., Wagner, W., Kienle, P., and Frahm, R., Z. Phys. B 73, 67 (1988).Google Scholar
6. Sandratskii, L. M., and Kubler, J., Europhys, Lett., 23 (9), 661666 (1993).Google Scholar
7. Kirsch, M. H., Kao, C. C., Settle, F., Caliebe, W. A., Hamalainen, K., and Hastings, J. B., Phys. Rev. Lett. 74, 4931 (1995).Google Scholar
8. Lang, J. C., Srajer, G., Detlefs, C., Goldman, A. I., Konig, H., Wang, X., Harmon, B. N., and McCallum, R. W., Phys. Rev. Lett. 74, 4935 (1995).Google Scholar
9. Giorgetti, C., Dartyge, E., Brouder, C., Baudelet, F., Meyer, C., Pizzini, S., Fontaine, A., and Galera, R. M., Phys. Rev. Lett. 75, 3186 (1995).Google Scholar
10. Li, Dongqi, Pearson, J., Bader, S. D., Mcllroy, D. N., Waldfried, C., and Dowben, P. A., Phys. Rev. B 51, 13895 (1995).Google Scholar
11. Ortega, J. E., Himpsel, F. J., Li, Dongqi, and Dowben, P. A., Solid State Comm. 91, 807811 (1994).Google Scholar