Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T19:22:08.070Z Has data issue: false hasContentIssue false

Temperature-Dependent Structural Disintegration of Delafossite CuFeO2

Published online by Cambridge University Press:  31 January 2011

Shojan P Pavunny
Affiliation:
shojanpp@gmail.com, University of Puerto Rico, Physics, San Jaun, PR, Puerto Rico
Ashok Kumar
Affiliation:
ashok553@gmail.com, University of Puerto Rico, Department of Physics, University campus, San Juan, PR, 00931, Puerto Rico
Reji Thomas
Affiliation:
etreji@yahoo.com, University of Puerto Rico, Physics, San Jaun, PR, Puerto Rico
Nishit M Murari
Affiliation:
nmmurari@gmail.com, University of Puerto Rico, Physics, San Jaun, PR, Puerto Rico
Ram S Katiyar
Affiliation:
rkatiyar@hpcf.upr.edu, University of Puerto Rico, Physics, San Jaun, PR, Puerto Rico
Get access

Abstract

Single phase delafossite p-type CuFeO2 (CFO) semiconductor was synthesized in bulk by modified solid state reaction technique. X-ray diffraction (XRD) and X-ray photo spectroscopy (XPS) studies suggest single phase CFO at room temperature. The energy dispersive X-ray spectroscopy (EDX) revealed that the atomic ratio of Cu and Fe is 1:1. The XPS spectra showed two intense Cu 2p3/2 and 2p1/2 peaks at 932.5 eV and 952 eV suggesting Cu is in +1 state. The temperature dependent Raman spectra of CFO displayed two intense modes at 349 cm-1 and 690 cm-1 at room temperature that matched with other delaffosite structures. The temperature dependent Raman spectra showed significant shift in both Raman active modes to lower frequency side. We observed the disappearance of pure CFO Raman active modes above 750 K and the appearance of new peaks related to CuO compounds, indicating disintegration of CFO starting above 750 K which almost completed above 1100 K. The temperature dependent thermo-gravimetric analysis indicates change in CFO mass above 750 K with wide range of differential thermo-gravimetric slope suggests disintegration started above 750 K and completed at 1100 K. Raman spectra, XPS, and XRD of disintegrated CFO matched well with the Raman spectra, XPS and XRD of CuO and CuFe2O4 confirmed its disintegration above 750 K in air.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kawazoe, Hiroshi, Yasukawa, Masahiro, Hyodo, Hiroyuki, Kurita, Masaaki, Yanagi, Hiroshi, and Hosono, Hideo, Nature, 389, 939 (1997).Google Scholar
2 Shannon, Robert D., Prewitt, Charles T., and Rogers, Donald Burl, Inorg. Chem., 10 (4), 719 (1971).Google Scholar
3 Friedel, M. C., Hebd, C. R.. Acad. Sci,. 77, 211 (1873).Google Scholar
4 Hayashi, Kei, Nozaki, Tomohiro, and Kajitani, Tsuyashi, Japanese Journal of Applied Physics, 46, 5226 (2007).Google Scholar
5 Kimura, T., Lashley, J.C., and Ramirez, A. P., Physical Review B, 73, 220401 (2006).Google Scholar
6 Seiki, S., Yamasaki, Y., Shiomi, Y., Iguchi, S., Onose, Y., and Tokura, Y., Physical Review B, 75, 100403 (2007).Google Scholar
7 Takahashi, H., Motegi, Y., Tsuchigane, R., and Hasegawa, M. Journal of Magnetism and Magnetic Materials, 272, 216217 (2004).Google Scholar
8 Pellicer-Porres, J., Segura, A., Ferrer-Roca, Ch., Martinez-Garcia, D., Sans, J.A. and Martinez, E., Itié, J. P., Polian, A., Baudelet, F., Muñoz, A. , Rodríguez-Hernández, P., and Munsch, P. Physical Review B, 69, 024109 (2004).Google Scholar
9 Pellicer-Porres, J., Segura, A., Martinez, E., Saitta, A. M., Polian, A., Chervin, J. C., and Canny, B., Physical Review B, 72, 064301 (2005).Google Scholar
10 Pellicer-Porres, J., Martinez-Garcia, D., Segura, A., Rodriguez-Hernandez, P., Munoz, A., Chervin, J.C., Garro, N., and Kim, D., Physical Review B, 74, 184301 (2006).Google Scholar
11 Samanta, K., Bhattacharya, P. and Katiyar, R.S., Physical Review B, 75, 035208 (2007)Google Scholar
12“POWD” an interactive powder diffraction data interpretation and indexing program, Vr 2.1, E. Wu, school of Physical Science, Finder University of South Australia, Bedford, S 5042, Australia. 13.Google Scholar
13JCPDS pdf# 75214Google Scholar
14 Ghijsen, J., Tjeng, L. H., Elp, J. Van, Eskes, H., Westerink, J., Sawatzky, G. A., and Czyzyk, M.T., Phys Rev B 38, 11322 (1988)Google Scholar
15 Galakhov, V.R., Poteryaev, A.I., Kurmaev, E.Z., Anisimov, V.I., St. Bartkowski, Neumann, M., Lu, Z. W., Klein, B. M. and Zhao, Tong-Rong Physical Review B, 56, 4584 (1997).Google Scholar
16 Dar, M.A., Ahsanulhaq, Q., Kim, Y.S., Sohn, J.M., Kima, W.B., Shin, H.S., Applied Surface Science 255, 62796284 (2009)Google Scholar
17 Goldstein, H.F., Kim, Dai-sik, Yu, Peter Y., Bourne, L.C., Chaminade, J.P. and Naganga, Leon, Phys. Rev. B 41, 71927194 (1990)Google Scholar
18 Chou, M.H., Liu, S.B., Huang, C.Y., Wu, S.Y. and Cheng, C.L., Applied Surface Science 254, 75397543 (2008)Google Scholar
19JCPDS pdf# 801917Google Scholar
20JCPDS pdf# 770010Google Scholar
21 Muginier, E., Barnabe, A. and Tailhades, P., Solid State ionics, 177, 607612 (2006).Google Scholar