Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T00:56:49.179Z Has data issue: false hasContentIssue false

Template-free and low temperature CVD synthesis of vertically aligned 1-D ZnO nanostructures for photovoltaic devices by precursor oxidation protection

Published online by Cambridge University Press:  04 August 2015

Taehoon Lim
Affiliation:
Materials Science and Engineering program, University of California, Riverside Riverside, CA 92507, U.S.A. Southern California Research Initiative for Solar Energy, University of California, Riverside Riverside, CA 92507, U.S.A.
Alfredo A. Martinez-Morales
Affiliation:
Southern California Research Initiative for Solar Energy, University of California, Riverside Riverside, CA 92507, U.S.A.
Get access

Abstract

Zinc oxide (ZnO) is a crystalline material with diverse morphology, large bandgap and high visible light transparency. All of these characteristics make ZnO a suitable material for applications in optical devices such as photovoltaic cells and photodiodes. Regarding photovoltaic applications, it is necessary to grow ZnO on a transparent conducting oxide (TCO) substrate. In this work, vertically aligned 1-dimensional ZnO have been synthesized on a TCO substrate through chemical vapor deposition (CVD). Although ZnO is capable of being synthesized at lower temperatures through the use of Zn powder precursor, oxidation of precursor remains a significant limiting factor to control dimensional characteristics of the synthesized product.

In our work we have developed a method by which ZnO is synthesized under lower temperatures through the prevention of precursor oxidation and control of Zn vapor fluid dynamics. Partial pressure of Zn vapor—a significant factor in the morphology and quality of product—is controlled and maintained during growth. The morphology and crystal structure of the synthesized ZnO is characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). We also demonstrate the fabrication of dye-sensitized solar cell (DSSC) with synthesized 1-dimensional ZnO, as a photoelectrode, and compare the photovoltaic characteristics of two devices fabricated under same conditions, except for the photoelectrode utilized.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wallentin, J., Anttu, N., Asoli, D., Huffman, M., Åberg, I., Magnusson, M. H., Siefer, G., Fuss-Kailuweit, P., Dimroth, F., Witzigmann, B., Xu, H. Q., Samuelson, L., Deppert, K. and BorgstrÖm, M. T., Science 339, 1057 (2013)CrossRefGoogle Scholar
Kelzenberg, M. D., Boettcher, S. W., Petykiewicz, J. A., Turner-Evans, D. B., Putnam, M. C., Warren, E. L., Spurgeon, J. M., Briggs, R. M., Lewis, N. S. and Atwater, H. A., Nat. Mater. 9, 239 (2010)CrossRefGoogle Scholar
Krogstrup, P., Jørgensen, H. I., Heiss, M., Demichel, O., Holm, J. V., Aagesen, M., Nygard, J. and Morral, A. F., Nat. Photonics 7, 306 (2013)CrossRefGoogle Scholar
Chetia, T. R., Barpuzary, D. and Qureshi, M., Phys. Chem. Chem. Phys. 16, 9625 (2014)CrossRefGoogle Scholar
Ren, S., Zhao, N., Crawford, S. C., Tambe, M., Bulović, V. and Gradečak, S., Nano Lett. 11, 408 (2011)CrossRefGoogle Scholar
Chen, Y., Bagnall, D. M., Koh, H., Park, K., Hiraga, K., Zhu, Z. and Yao, T., J. Appl. Phys. 84, 3912 (2000)CrossRefGoogle Scholar
Bagnall, D. M., Chen, Y. F., Zhu, Z., Yao, T., Koyama, S., Shen, M. Y. and Goto, T., Appl. Phys. Lett. 70, 2230 (1997)CrossRefGoogle Scholar
Wang, X., Zhou, J., Song, J., Liu, J., Xu, N. and Wang, Z. L., Nano Lett. 6, 2768 (2006)CrossRefGoogle Scholar
Vanheusden, K., Seager, C. H., Warren, W. L., Tallant, D. R. and Voigt, J. A., Appl. Phys. Lett 68, 403 (1996)CrossRefGoogle Scholar
Guo, M., Diao, P., Wang, X. and Cai, S., J. Solid State Chem. 178, 3210 (2005)CrossRefGoogle Scholar
Wang, Y., Shi, R., Lin, J. and Zhu, Y., Energy Environ. Sci. 4, 2922 (2011)CrossRefGoogle Scholar
Yang, P., Yan, H., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R. and Choi, H., Adv. Funct. Mater. 12, 323 (2002)3.0.CO;2-G>CrossRefGoogle Scholar
Park, W. I., Kim, D. H., Jung, S. W. and Yi, G., Appl. Phys. Lett. 80, 4232 (2002)CrossRefGoogle Scholar
Mahamuni, S., Borgohain, K., Bendre, B. S., Leppert, V. J. and Risbud, S. H., J. Appl. Phys. 85, 2861 (1999)CrossRefGoogle Scholar
Sun, H., Luo, M., Weng, W., Cheng, K., Du, P., Shen, G. and Han, G., Nanotech. 19, 125603 (2008)CrossRefGoogle Scholar
Sun, Y., Ndifor-Angwafor, N. G., Riley, D. J. and Ashfold, M. N. R., Chem. Phys. Lett. 431, 352 (2006)CrossRefGoogle Scholar
Vayssieres, L., Adv. Mater. 15, 464 (2003)CrossRefGoogle Scholar
Wang, Z., Qian, X., Yin, J. and Zhu, Z., Langmuir 20, 3441 (2004)CrossRefGoogle Scholar
Govender, K., Boyle, D. S., Kenway, P. B. and O’Brien, P., J. Mater. Chem. 14, 2575 (2004)CrossRefGoogle Scholar
Zhang, Z., Bao, C., Yao, W., Ma, S., Zhang, L. and Hou, S., Superlattices Microstruct. 49, 644 (2011)CrossRefGoogle Scholar
Lee, W., Jeong, M. and Myoung, J., Acta Mater. 52, 3949 (2004)CrossRefGoogle Scholar
Jiang, C. Y., Sun, X. W., Lo, G. Q. and Kwong, D. L., Appl. Phys. Lett. 90, 263501 (2007)CrossRefGoogle Scholar
Islavath, N., Ramasamy, E., Das, D. and Joshi, S. V., Ceram. Int. 41, 4118 (2015)CrossRefGoogle Scholar
Xia, Y., Zhang, W., Zhang, Y., Yu, X. and Chen, F., Mater. Lett. 131, 178 (2014)CrossRefGoogle Scholar
Pacio, M., Juárez, H., Escalante, G., García, G., Diaz, T. and Rosendo, E., Mater. Sci. Eng. B 174, 38 (2010)CrossRefGoogle Scholar
Nicolay, S., Despeisse, M., Haug, F. J. and Ballif, C., Sol. Energy Mater. Sol. Cells 95, 1031 (2011)CrossRefGoogle Scholar
Robbins, J. J., Esteban, J., Fry, C. and Wolden, C. A., J. Electrochem. Soc. 150, C693 (2003)CrossRefGoogle Scholar
Wu, B., Zhang, Y., Shi, Z., Li, X., Cui, X., Zhuang, S., Zhang, B. and Du, G., J. Lumin. 154, 587 (2014)CrossRefGoogle Scholar