Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T02:32:51.340Z Has data issue: false hasContentIssue false

Tension Tests Behavior of API 5L X60 Pipeline Steel in a Simulated Soil Solution to Evaluate SCC Susceptibility

Published online by Cambridge University Press:  20 December 2012

A. Contreras*
Affiliation:
Instituto Mexicano del Petroleó, Eje Central Lázaro Cárdenas Norte 152, Col. San Bartolo Atepehuacan, C.P. 07730, México.
S. L. Hernández
Affiliation:
Instituto Mexicano del Petroleó, Eje Central Lázaro Cárdenas Norte 152, Col. San Bartolo Atepehuacan, C.P. 07730, México.
R. Galvan-Martinez
Affiliation:
Unidad Anticorrosión, Instituto de Ingeniería, Universidad Veracruzana, Ave. S.S Juan Pablo II S/N, Ciudad Universitaria, Fracc. Costa Verde, Veracruz, C.P. 94294, México.
O. Vega-Becerra
Affiliation:
Centro de Investigación en Materiales Avanzados, S.C. Unidad Monterrey Alianza Norte 202. Parque de Investigación e Innovación Tecnológica. Apodaca, Nuevo León, C.P. 66600, México.
*
Get access

Abstract

In this work slow strain rate tests (SSRT) were used for the evaluation of API 5L X60 in contact with a simulated soil solution called NS4 in order to evaluate stress corrosion cracking (SCC) susceptibility. SSRT were carried out in NS4 solution at room temperature to simulate dilute ground water that has been found to be associated with SCC of low carbon steel pipelines. A strain rate of 1x10-6 sec-1 was used. According to the analysis of SSRT results, the X60 pipeline steel is highly resistant to SCC at the conditions studied. A combine fracture type it was observed: ductile and brittle with a transgranular appearance. Some pits close to the fracture zone were observed. The failure process and mechanism of X60 steel in NS4 solution are controlled by anodic dissolution and hydrogen embrittlement which was revealed with the internal cracks observed in the surface fracture. There is a relation between the strength of the steel and the SCC susceptibility, thus, increasing strength in the steel, the SCC susceptibility increases as a function of the pH solution used.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Parkins, R. N., Corrosion, 50, 394 (1994).CrossRefGoogle Scholar
Elboujdaini, M., Wang, Y.Z., Revie, R.W., International Pipeline Conference (IPC) ASME, 967 (2000).Google Scholar
Beavers, J. A., Harle, B. A., Journal of Offshore Mechanics and Artic Eng. 123, 147 (2001).CrossRefGoogle Scholar
Leis, B. N. and Eiber, R. J., Proceedings, first International Business Conference on Onshore Pipelines, Berlin, December (1997).Google Scholar
Fang, B. Y., Eadie, R. L., Chen, W. X. and Elboujdaini, M., Corrosion Engineering, Science and Technology, 45, 302 (2010).CrossRefGoogle Scholar
Fang, B.Y., Atrens, A., Wang, J. Q., Han, E.H., Zhu, Z.Y. and Ke, W., Journal of Materials Science, 38, 127 (2003).CrossRefGoogle Scholar
Zhang, X. Y., Lambert, S.B., Sutherby, R. and Plumtree, A., Corrosion, 55, 297 (1999).CrossRefGoogle Scholar
Liu, Z.Y., Li, X.G., Du, C.W., Zhai, G.L., Cheng, Y.F., Corrosion Sci., 50, 2251 (2008).CrossRefGoogle Scholar
Bosch, R. W., Corrosion Sci., 47, 125 (2005).CrossRefGoogle Scholar
Lou, X., Singh, P. M., Electrochimica Acta, 56, 1835 (2011).CrossRefGoogle Scholar
Kentish, P., Corrosion Sci., 49, 2521 (2007).CrossRefGoogle Scholar
Shoji, T., Lu, Z., Murakami, H., Corrosion Sci., 52, 769 (2010).CrossRefGoogle Scholar
Ramamurthy, S., Lau, W.M.L., Atrens, A., Corrosion Sci., 53, 2419 (2011).CrossRefGoogle Scholar
Cheng, Y. F., Electrochimica Acta, 52, 2661 (2007).CrossRefGoogle Scholar
15. Li, X. C., Eadie, R.L. and Luo, J.L., Corrosion Engineering, Science and Technology, 43, 297 (2008).CrossRefGoogle Scholar
Benmoussat, A. and Hadjel, M., Journal of Corrosion Science and Engineering, 7, 1 (2005).Google Scholar
Qiao, L. J., Luo, J. L., Journal of Materials Science Letters, 16, 516 (1997).CrossRefGoogle Scholar
Kane, R. D., Joia, C.J.B.M., Small, A.L.L.T. and Ponciano, J.A.C., Materials Performance, 71 (1997).Google Scholar
NACE TM-0198 Slow Strain Rate Test Method for Screening Corrosion-Resistant Alloys (CRAs) for Stress Corrosion Cracking in Sour Oilfield Service, 121, (2004).Google Scholar
ASTM G-129, Slow strain rate testing to evaluate the susceptibility of metallic materials to environmentally assisted cracking, 17, (2006).Google Scholar
Asahi, H., Kushida, T., Kimura, M., Fukai, H., and Okano, S., Corrosion, 55, 644 (1999).CrossRefGoogle Scholar
Sawamura, M., Asahi, H., Omura, T., Kishikawa, H., Ishikawa, N. and Kimura, M., Corrosion NACE Conference & Expo, Paper 11286 (2011).Google Scholar
Kushida, T., Nose, K., Asahi, H., Kimura, M., Yamane, Y., Endo, S., Corrosion NACE Conference & Expo, Paper 01213 (2001).Google Scholar
Contreras, A., Hernández, S. L., . Orozco-Cruz, R, Galvan-Martínez, R., Materials & Design, 35, 281(2012).CrossRefGoogle Scholar
Lu, B. T. and Luo, J. L., Corrosion, 62, 723 (2006).CrossRefGoogle Scholar
Al-Mansour, M., Alfantazi, A. M., El-boujdaini, M., Materials & Design, 30, 4088 (2009).CrossRefGoogle Scholar
Liang, P., Li, X., Du, C., Chen, X., Materials & Design, 30, 1712 (2009).CrossRefGoogle Scholar
Chen, W., Van Boven, G., Rogge, R., Acta Materialia, 55, 43 (2007).CrossRefGoogle Scholar