Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T17:17:25.740Z Has data issue: false hasContentIssue false

Tests of the Affinity Assumption in Phantomlike Elastomer Networks

Published online by Cambridge University Press:  31 January 2011

Misty Davies
Affiliation:
misty.davies@gmail.com, Stanford University, Mechanical Engineering, Stanford, California, United States
Adrian Lew
Affiliation:
lewa@stanford.edu, Stanford University, Mechanical Engineering, Stanford, California, United States
Get access

Abstract

Phantomlike elastomer simulations do not always deform globally affinely in the way that classical theory predicts. Assuming that each crosslink will deform affinely with its topological neighbors gives much better results, and creates a way to isolate crosslinks with unpredictable deformation properties. The correlation of non-affinities and network properties depends on the constitutive model and boundary condition used. We always find a correlation between local density of crosslinks and degree of non-affinity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Andrady, A.L., Llorente, M.A., and Mark, J.E., J. Chem. Phys. 73, 1439 (1980).10.1063/1.440205Google Scholar
2 Andrady, A.L., Llorente, M.A., and Mark, J.E., J. Chem. Phys. 72, 2282 (1980).10.1063/1.439472Google Scholar
3 Bastide, J. and Leibler, L., Macromolecules 21, 2647 (1988).10.1021/ma00186a058Google Scholar
4 Bastide, J., Leibler, L., and Prost, J., Macromolecules 23, 1821 (1990).10.1021/ma00208a044Google Scholar
5 Benson, S. J., McInnes, L. C., Moré, J., Munson, T., and Sarich, J., http://www.mcs.anl.gov/tao.Google Scholar
6 Bower, A. F. and Weiner, J. H.. J. Chem. Phys. 120, 11948 (2004).10.1063/1.1753565Google Scholar
7 Bruinsma, R. and Rabin, Y., Phys. Rev. E: Stat. Phys., Plasmas, Fluids 49, 554 (1994).10.1103/PhysRevE.49.554Google Scholar
8 Chandran, P.L. and Barocas, V.H., J. Biomech. Eng. 128, 259 (2006).10.1115/1.2165699Google Scholar
9 Darinskii, A.A., Zarembo, A., and Balabaev, N.K., Macromol. Symp. 252, 101 (2007).10.1002/masy.200750610Google Scholar
10 DiDonna, B.A. and Lubensky, T.C., Phys. Rev. E: Stat. Phys., Plasmas, Fluids 72, 06619 (2005).10.1103/PhysRevE.72.066619Google Scholar
11 Erman, B. and Mark, J.E., Structures and Properties of Rubberlike Networks. (Oxford University Press, New York, 1997).Google Scholar
12 Head, D.A., Levine, A.J., and MacKintosh, F.C., Phys. Rev. Lett. 91, 108102 (2003).10.1103/PhysRevLett.91.108102Google Scholar
13 James, H.M. and Guth, E., J. Chem. Phys., 11, 455 (1943).10.1063/1.1723785Google Scholar
14 Kennedy, M.A., Peacock, A. J., and Mandelkern, L., Macromolecules 27, (1994).10.1021/ma00097a009Google Scholar
15 Kuhn, W. and Grun, F., J. Polym. Sci. 1, 183 (1946).10.1002/pol.1946.120010306Google Scholar
16 Levine, A.J., Head, D.A., and MacKintosh, F.C., J. Phys.: Condens. Matter 16, S2079 (2004).Google Scholar
17 Long, D. and Sotta, P., in The IMA Vol. in Mathematics and its Applications: Modeling of Soft Matter, Vol. 141, edited by Calderer, M C.T. and Terentjev, E.M. (Springer, New York, 2005), pp. 205234.10.1007/0-387-32153-5_9Google Scholar
18 Mark, J.E., J. Phys. Chem. B 28, 1205 (2003).Google Scholar
19 Marrucci, G., Greco, F., and Ianniruberto, G., J. Rheol. Rheol. 44, 845 (2000).10.1122/1.551124Google Scholar
20 Onck, P.R., Koeman, T., Dillen, T. van, and Giessen, E. van der, Phys. Rev. Lett, 95, 178102 (2005).10.1103/PhysRevLett.95.178102Google Scholar
21 Ramzi, A., Hakiki, A., Bastide, J., and Boue, F., Macromolecules 30, 2963 (1997).10.1021/ma961309zGoogle Scholar
22 Ramzi, A., Zielinski, F., Bastide, J., and Boue, F., Macromolecules 28, 3570 (1995).10.1021/ma00114a010Google Scholar
23 Rouf, C., Bastide, J., Pujol, J. M., Schosseler, F., and Munch, J. P., Phys. Rev. Lett. 73, 830 (1994).10.1103/PhysRevLett.73.830Google Scholar
24 Rubinstein, M. and Colby, R., Polymer Physics (Oxford University Press, ??, 2003).Google Scholar
25 Rubinstein, M. and Panyukov, S., Macromolecules 30, 8036 (1997).10.1021/ma970364kGoogle Scholar
26 Sommer, J. and Lay, S., Macromolecules 35, 9832 (2002).10.1021/ma0205515Google Scholar
27 Svaneborg, C., Grest, G.S., and Everaers, R. E, Phys. Rev. Lett. 93, 257801 (2000).10.1103/PhysRevLett.93.257801Google Scholar
28 Westermann, S., Pyckhout-Hintzen, W., Richter, D., Straube, E., Egelhaaf, S., and May, R., Macromolecules 34, 2186 (2001).10.1021/ma0014259Google Scholar