Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T05:45:59.846Z Has data issue: false hasContentIssue false

Texture Evolution of Lithium Fluoride Thin Films by Nucleation

Published online by Cambridge University Press:  26 February 2011

Hakkwan Kim
Affiliation:
kim87@purdue.edu, Purdue University, Materials Engineering, 501 Northwestern Avenue, West Lafayette, IN, 47907, United States
Alexander H. King
Affiliation:
alexking@ecn.purdue.edu, Purdue University, School of Materials Engineering, 501 Northwestern Avenue, West Lafayette, IN, 47907, United States
Get access

Abstract

We have used a transmission electron microscope (TEM)-based method to extract grain size information for 〈111〉 surface normal grains in lithium fluoride (LiF) thin films, and applied this to analyze textures as a function of substrate temperature and annealing time. The size distributions of grains diffracting into the (111)+(200) and (220) rings were measured separately using dark field (DF) TEM images. From these data, we deduce the distribution of 〈111〉 surface normal grain sizes based on the assumption that only 3 principal textures (100), (110) and (111) exist in films. The (111) texture formation was also observed by x-ray diffraction (XRD). For all deposition and annealing conditions, the grain size data can be matched to lognormal distributions within an acceptable error, but at longer annealing times the distribution becomes bimodal. A novel feature of the LiF films is that the (111) texture component strengthens with annealing and substrate temperature, through the nucleation of new grains rather than the growth of existing ones.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Henley, S. J., Ashfold, M. N. R., Pearce, S. R. J., Appl. Surf. Sci. 217, 68 (2003).Google Scholar
2. Somma, F., Ercoli, A., Santucci, S., Lozzi, L., Passacantando, M., Picozzi, P., J. Vac. Sci. Technol. A 13, 1013 (1995).Google Scholar
3. Basiev, T. T., Mirov, S. B., Osiko, V. V., IEEE J. Quantum Electronics 24, 1052 (1988).Google Scholar
4. Gu, H., Qi, L., Wan, L., Opt. Comm. 63, 237 (1988).Google Scholar
5. Perea, A., Gonzalo, J., Afonso, C. N., Martelli, S., Montereali, R. M., Appl. Surf. Sci. 138–139, 533 (1999).Google Scholar
6. Golek, F., Mazur, P., Surf. Sci. 541, 173 (2003).Google Scholar
7. Floro, J. A., Thompson, C. V., Carel, R., Bristowe, P. D., J. Mater. Res. 9, 241 (1994).Google Scholar
8. Thompson, C. V., Carel, R., Mater. Sci. Eng. B 32, 211 (1995).Google Scholar
9. Montereali, R. M., Baldacchini, B., Martelli, S., Carmo, L. C. S., Thin Solid Films 196, 75 (1991).Google Scholar
10. Kaiser, U., Kaiser, N., Weiβbrodt, P., Mademann, U., Hacker, E., Müller, H., Thin Solid Films 217, 7 (1992).Google Scholar
11. Baldacchini, G., Cremona, M., Martelli, S., Montereali, R. M., Carmo, L. C. S., Phys. Stat. Sol. (a) 151, 319 (1995).Google Scholar
12. Hertzberg, R. W., “Deformation and fracture mechanics of engineering materials”, (Wiley, New York, 1976).Google Scholar
13. Pelleg, J., Zevin, L. Z., Lungo, S., Croitoru, N., Thin Solid Films 197, 117 (1991).Google Scholar