Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T01:10:16.065Z Has data issue: false hasContentIssue false

Theoretical Aspects of Non-Debye Relaxation in Ionic Conductors

Published online by Cambridge University Press:  28 February 2011

Wolfgang Dieterich
Affiliation:
Fakultät für Physik, Universität Konstanz, D-7750 Konstanz, Federal Republic of Germany
B. Loehle
Affiliation:
Fakultät für Physik, Universität Konstanz, D-7750 Konstanz, Federal Republic of Germany
J. Petersen
Affiliation:
Fakultät für Physik, Universität Konstanz, D-7750 Konstanz, Federal Republic of Germany
O. Stiller
Affiliation:
Fakultät für Physik, Universität Konstanz, D-7750 Konstanz, Federal Republic of Germany
Get access

Abstract

Tracer diffusion as well as collective transport properties of ionic conductors are investigated within a lattice-gas model of charged particles. Results obtained from Monte Carlo simulations support the conclusion that the interplay of Coulomb-interactions among diffusing ions and structural disorder in the material provides a general mechanism for non-Debye relaxational effects commonly observed by experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jonscher, A.K., Nature 267, 673 (1977); Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983)CrossRefGoogle Scholar
2. Ngai, K.L., Comments on Solid State Phys. 9, 127 (1979) and 141 (1980); K.L. Ngai, R.W. Rendell and H. Jain, Phys. Rev. B 30, 2133 (1984)Google Scholar
3. Funke, K., Z. Phys. Chem. (N.F.) 154, 251 (1987)CrossRefGoogle Scholar
4. Ingram, M.D., Physics and Chemistry of glasses 28, 215 (1987)Google Scholar
5. Suemoto, T. and Ishigame, M., Phys. Rev. B 32, 4126 (1985); Phys. Rev. B 33, 2757 (1986)CrossRefGoogle Scholar
6. Funke, K., in “Superionic Solids and Solid Electrolytes”, edited by Laskar, A.L. and Chandra, S., Academic Press (New York, London, 1989) p.569 and references therein.CrossRefGoogle Scholar
7. Ngai, K.L., Solid State Ionics 5, 27 (1981)CrossRefGoogle Scholar
8. Carini, G., Cutroni, M., Federico, M., Galli, G. and Tripodo, G., Phys. Rev. B 30, 7219 (1984)CrossRefGoogle Scholar
9. Börjesson, L., Torell, L.M. and Howells, W.S., Phil. Mag. B 95, 105 (1989)CrossRefGoogle Scholar
10. Niklasson, G.A., J. Appl. Phys. 62, R1 (1987)CrossRefGoogle Scholar
11. Dissado, L.A. and Hill, R. M., Phys. Rev. B 37, 3434 (1988)CrossRefGoogle Scholar
12. Wang, J.C. and Bates, J.B., Mat. Res. Soc. Symp. Proc. Vol.135, 57 (1989)CrossRefGoogle Scholar
13. Schirmacher, W., Solid State Ionics 28–30, 129 (1988)CrossRefGoogle Scholar
14. Dieterich, W., Petersen, J., Bunde, A. and Roman, H.E., Solid State Ionics 40/41, 184 (1990); A. Bunde, P. Maass, H.E. Roman, W. Dieterich and J. Petersen, Solid State Ionics 40/41, 187 (1990); P. Maass, J. Petersen, A. Bunde, W. Dieterich and H.E. Roman, preprint (1990)CrossRefGoogle Scholar
15. Lindsey, C. P. and Patterson, G. D., J. Chem. Phys. 73, 3348 (1980)CrossRefGoogle Scholar
16. Almond, D. P. and West, A. R., Solid State Ionics 26, 265 (1988)CrossRefGoogle Scholar
17. Ishii, T., Appl. Phys. A 49, 61 (1989)CrossRefGoogle Scholar
18. Aniya, M., Okazaki, H. and Kobayashii, M., J. Phys. Soc. Japan 58, 3046 (1989)CrossRefGoogle Scholar