Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T11:30:58.399Z Has data issue: false hasContentIssue false

Theoretical Investigations on the Magneto-Optical Properties of Transition Metal Multilayer and Surface Systems

Published online by Cambridge University Press:  15 February 2011

H. Ebert
Affiliation:
Institut für Phys. Chemie, Univ. München, Theresienstr. 37, D-80333 München, Germany
A. Perlov
Affiliation:
Inst. of Metal Physics, Ukrainian National Academy of Sciences, Vernadsky Str. 36, 252142 Kiev 142, Ukraine
A. N. Yaresko
Affiliation:
Inst. of Metal Physics, Ukrainian National Academy of Sciences, Vernadsky Str. 36, 252142 Kiev 142, Ukraine
V. N. Antonov
Affiliation:
Inst. of Metal Physics, Ukrainian National Academy of Sciences, Vernadsky Str. 36, 252142 Kiev 142, Ukraine
S. Uba
Affiliation:
Institute of Physics, Warsaw University Branch in Bialystok, Lipowa 41, PL-15–424 Bialystok, Poland
Get access

Abstract

Results of theoretical investigations on the magneto-optical Kerr-effect in layered systems are presented that are based on a fully relativistic description of the underlying electronic structure. To investigate the importance of the various sources of the Kerr effect model calculations have been performed. Applications to multilayer systems have been done for systems with non-magnetic spacers having a relatively high (Co/Pd, Co/Pt) as well as a small induced magnetic moment (Co/Cu) and comparison with experiment is made. To investigate surface layer systems the use of auxiliary model multilayer systems is explored.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Faraday, M., Phil. Trans. Roy. Soc. 136, 1 (1846).Google Scholar
2. Kerr, J., Phil. Mag. 3, 321 (1877).Google Scholar
3. Mee, C. D. and Daniel, E. D., Magnetic Recording, McGraw-Hill, New York, 1987.Google Scholar
4. Buschow, K. H. J., Ferromagnetic Materials, Volume 4, page 558, North-Holland, Amsterdam, 1988.Google Scholar
5. van Engen, P. G., Buschow, K. H. J., Jongebreur, R., and Erman, M., J. Appl. Phys. Letters 42, 202 (1983).Google Scholar
6. Guo, G. Y., Ebert, H., and Temmerman, W. M., J. Magn. Magn. Materials 104–107, 1772 (1992).Google Scholar
7. Guo, G. Y., Ebert, H., and Temmerman, W. M., J. Phys.: Condensed Matter 3, 8205 (1991).Google Scholar
8. Daalderop, G. H. D., Kelly, P. J., and Schuurmans, M. F. H., Phys. Rev. B 42, 7270 (1990).Google Scholar
9. Wang, D. S., Wu, R. Q., and Freeman, A. J., Phys. Rev. B 48, 15886 (1993).Google Scholar
10. Weller, D., Reim, W., Spörl, K., and Brändie, H., J. Magn. Magn. Materials 49, 12888 (1991).Google Scholar
11. Sato, K. et al., J. Magn. Magn. Materials 126, 572 (1993).Google Scholar
12. Uba, S. et al., J. Magn. Magn. Materials 144, 575 (1995).Google Scholar
13. Uba, S. et al., Phys. Rev. B 53, 6526 (1996).Google Scholar
14. Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M. B., and Sowers, H., Phys. Rev. Letters 57, 2442 (1986).Google Scholar
15. Parkin, S. S. P., More, N., and Roche, K. P., Phys. Rev. Letters 64, 2304 (1990).Google Scholar
16. Baibich, M. N., Broto, J. M., Fert, A., Dau, F. N. V., and Petroff, F., Phys. Rev. Letters 61, 2472 (1988).Google Scholar
17. Binasch, G., Grünberg, P., Saurenbach, F., and Zinn, W., Phys. Rev. B 39, 4828 (1989).Google Scholar
18. Ebert, H., Rüegg, R., Schütz, G., Wienke, R., and Zeper, W. B., J. Magn. Magn. Materials 93, 601 (1991).Google Scholar
19. Rüegg, R. et al., J. Appl. Physics 69, 5655 (1991).Google Scholar
20. Samant, M. G. et al., Phys. Rev. Letters 72, 1112 (1994).Google Scholar
21. Pizzini, S. et al., Phys. Rev. Letters 74, 1470 (1995).Google Scholar
22. Edwards, D. M., Mathon, J., Muniz, R. B., and Phan, M. S., Phys. Rev. Letters 67, 493 (1991).Google Scholar
23. Bruno, P. and Gyorfty, B. L., Phys. Rev. Letters 71, 181 (1993).Google Scholar
24. Ortega, J. E. and Himpsel, F. J., Phys. Rev. Letters 69, 844 (1992).Google Scholar
25. Ortega, J. E., Himpsel, F. J., Mankey, G. J., and Willis, R. F., Phys. Rev. B 47, 1540 (1993).Google Scholar
26. Carbone, C., Vescovo, E., Rader, O., Gudat, W., and Eberhardt, W., Phys. Rev. Letters 71, 2805 (1993).Google Scholar
27. Lang, P., Nordström, L., Zeller, R., and Dederichs, P. H., Phys. Rev. Letters 71, 1927 (1993).Google Scholar
28. Katayama, T., Suzuki, Y., Awano, H., Nishihara, Y., and Koshizuka, K., Phys. Rev. Letters 60, 1426 (1988).Google Scholar
29. Sakurai, M. and Shinjo, T., J. Appl. Physics 74, 6840 (1993).Google Scholar
30. Xu, Y. B. et al., J. Magn. Magn. Materials 140–144, 581 (1995).Google Scholar
31. Bennett, W. R., Schwarzacher, W., and Egelhoff, W. F., Phys. Rev. Letters 65, 3169 (1990).Google Scholar
32. Qin, Z. Q., Pearson, J., Berger, A., and Bader, S. D., Phys. Rev. Letters 68, 1398 (1992).Google Scholar
33. Geerts, W. et al., Phys. Rev. B 50, 12581 (1994).Google Scholar
34. Carl, A. and Weiler, D., Phys. Rev. Letters 74, 190 (1995).Google Scholar
35. Kleiner, W. H., Phys. Rev. 142, 318 (1966).Google Scholar
36. MacDonald, A. H. and Vosko, S. H., J. Phys. C: Solid State Phys. 12, 2977 (1979).Google Scholar
37. Ebert, H., Freyer, H., Veines, A., and Guo, G.-Y., Phys. Rev. B 53, 7721 (1996).Google Scholar
38. Andersen, O. K., Phys. Rev. B 12, 3060 (1975).Google Scholar
39. Ebert, H., Phys. Rev. B 38, 9390 (1988).Google Scholar
40. Kubo, R., J. Phys. Soc. Japan 12, 570 (1957).Google Scholar
41. Bennett, H. S. and Stem, E. A., Phys. Rev. 137, A (1965).Google Scholar
42. Ebert, H., Rep. Prog. Phys. 59, 1665 (1996).Google Scholar
43. Guo, G. Y. and Ebert, H., Phys. Rev. B 51, 12633 (1995).Google Scholar
44. Oppeneer, P. M. and Antonov, V. N., Spin-orbit influenced spectroscopies of magnetic solids, Volume 466 of Lecture Notes in Physics, page 29, Springer, Berlin, 1996.Google Scholar
45. Oppeneer, P. M., Sticht, J., Maurer, T., and Kubier, J., Z. Physik B 88, 309 (1992).Google Scholar
46. Erskine, J. L. and Stern, E. A., Phys. Rev. Letters 30, 1329 (1973).Google Scholar
47. Wang, C. S. and Callaway, J., Phys. Rev. B 9, 4897 (1974).Google Scholar
48. Misemer, D. K., J. Appl. Physics 61, 3355 (1987).Google Scholar
49. Daalderop, G. H. O., Mueller, F. M., Albers, R. C., and Boring, A. M., J. Appl. Phys. Letters 52, 1636 (1988).Google Scholar
50. Nemoshkalenko, V. V. et al., Phys. Stat. Sol. (b) 120, 283 (1983).Google Scholar
51. Antonov, V. N. et al., Low Temp. Phys. 19, 494 (1995).Google Scholar
52. von Barth, U. and Hedin, L., J. Phys. C: Solid State Phys. 5, 1629 (1972).Google Scholar
53. Blöchl, P. E., Jepsen, O., and Andersen, O. K., Phys. Rev. B 49, 16223 (1994).Google Scholar
54. Uba, S., Uba, L., and Gontarz, R., IEEE Trans. Magn. MAG–30, 806 (1994).Google Scholar
55. Uba, S. et al., J. Phys.: Condensed Matter 9, 447 (1997).Google Scholar