Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T01:10:14.418Z Has data issue: false hasContentIssue false

Theoretical Model of Crystal Nucleation in PCM Nano-Glasses

Published online by Cambridge University Press:  01 February 2011

V. G. Karpov
Affiliation:
Physics and Astronomy, University of Toledo, Toledo, OH, 43606
Y. A. Kryukov
Affiliation:
yevgen.kryukov@utoledo.edu, University of Toledo, Physics and Astronomy, Toledo, OH, 43606, United States
M. Mitra
Affiliation:
mukutmitra@yahoo.com, University of Toledo, Physics and Astronomy, Toledo, OH, 43606, United States
I. V. Karpov
Affiliation:
ilya.v.karpov@intel.com, Intel Corporation, Santa Clara, CA, 95054, United States
Get access

Abstract

We propose a theoretical analysis of crystal nucleation in disordered nano-glass structure of chalcogenide phase change memory. Statistical fluctuations of microscopic structure parameters translate into statistical distribution of nucleation times determining the transition from the highly resistive (glassy) to the low resistive (crystalline) state. This distribution is shown to be log-normal with the peak time exponentially dependent on field strength, temperature, cell area and material parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lai, S. IEDM 2003 Technical Digest. IEEE International, p. 10.1.1 (2003). G. Atwood and R. Bez, Device Research Conference Digest, 63 29 (2005). A.L., Lacaita Solid-State Electronics, 50 , 24 (2006).Google Scholar
2. Adler, D. Henisch, H. Mott, N. Rev. Modern Phys., 50, 209 (1978). H., Fritzsche in Amorphous and liquid semiconductors, Ed. by J. Tauc, Plenum Press, London-New York, (1974) p. 313. D., Adler M. S., Shur M. Silver, S. R., Ovshinsky J.Appl.Phys, 51, 3289 (1980).Google Scholar
3. Russo, U. Ielmini, D. Redaelli, A. and Lacaita, Andrea L. IEEE Transactions on Electron Devices, 53, 3033 2006. ibid, p. 3041. U. Russo , D. Ielmini and A. L., Lacaita IEEE 07CH37867 45 th Annual International Reliability Physics Symposium, Phoenix, 547 (2007). A. Pirovano, A. Redaelli, F. Pellizzer, F. Ottogalli, M. Tosi, D. Ielmini, A. L., Lacaita and Roberto Bez, IEEE Transactions on Device an dMaterial Reliability, 4, 422 (2004).Google Scholar
4. Landau, L. D. and Lifshitz, E. M. Statistical Physics, Oxford; New York: Pergamon Press, 1980 Google Scholar
5. Landau, L.D. Lifshits, I. M. Electrodynamics of continuous media, Oxford; New York: Pergamon, (1984).Google Scholar
6. Batygin, V.V. and Toptygin, I.N.. Problems in electrodynamics, London, New York, Academic Press (1964)Google Scholar
7. Liu, W. Liang, K. M. Zheng, Y. K. Guand, S. R. and Chen, H. J. Phys. D: Appl. Phys. 30 3366 (1997). C.C. Koch, Material Science and Engineering, A 287, 213 (2000).Google Scholar
8. Karpov, V. G. Kryukov, Y. A. Savransky, S. D. and Karpov, I. V. Appl. Phys. Lett. 90, 123504 (2007).Google Scholar
9. Tanaka, K. Iizima, S. Sugi, M. Kikichi, M. Solid State Commun., 8, 75 (1970).Google Scholar
10. Karpov, V.G. Kryukov, Y. A. Karpov, I. V. and Mitra, M. Phys. Rev. Lett. (2008).Google Scholar
11. Weinberg, M. C. and Nelson, G. F. J. Non-Crystalline Solids 74, 177 (1985). C., Barrett W. Nix and A., Tetelman The Principles of Engineering Materials, Prentice-Hall, Englewood Cliffs, NJ, 1973. X. S., Miao, L. P., Shi, H. K., Lee, J. M., Li, R., Zhao, P. K., Tan, K. G., Lim, H. X., Yang and T. C., Chong Jap. J. Appl. Phys., 45, 3955 (2006)Google Scholar