Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T22:20:46.507Z Has data issue: false hasContentIssue false

Theoretical Modeling of Internal Ionic Resistance Due to SEI Layer Formation in Li/S Batteries

Published online by Cambridge University Press:  12 August 2015

M. Behzadirad
Affiliation:
Center for High Technology Materials (CHTM), University of New Mexico, Albuquerque, NM 87106, U.S.A.
O. Lavrova
Affiliation:
Center for High Technology Materials (CHTM), University of New Mexico, Albuquerque, NM 87106, U.S.A.
T. Busani
Affiliation:
Center for High Technology Materials (CHTM), University of New Mexico, Albuquerque, NM 87106, U.S.A.
Get access

Abstract

Li/S batteries have received too much attention due to their considerable theoretical energy density suitable for high energy applications. Here, we study the consequences of the SEI layer on internal resistance of the single battery cell due to polysulfide (PS) shuttling. The growth in resistance is related to the capacity fading of the cell. Using a model of series resistors, the total internal ionic resistance over cycling performance is expressed and compared for various nanostructured cathodes at different rates. It has been shown that SEI layer is the most significant factor in increasing of ionic resistance at the beginning of the battery aging, while electrode degradation and other phenomena are dominating resistance rise over higher cycles. We also demonstrate that cathodes with smaller equivalent porosity represent an excellent performance in preventing internal resistance enhancement.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zheng, G., Yang, Y., Cha, J. J., Hong, S. S., and Cui, Y., Nano Lett. 11, 4462 (2011).CrossRefGoogle Scholar
Barchasz, C., Leprêtre, J. C., Alloin, F., and Patoux, S., J. Power Sources, 199, 322 (2012).CrossRefGoogle Scholar
Mikhaylik, Y. V. and Akridge, J. R., J. Electrochem. Soc., 151, A1969 (2004).CrossRefGoogle Scholar
Cheon, S. E., Ko, K. S., Cho, J. H., Kim, S. W., Chin, E. Y., and Kim, H. T., J. Electrochem. Soc., 150(6), 800 (2003).CrossRefGoogle Scholar
Shin, J. H., Jung, S. S., Kim, K. W., and Ahn, H. J., J. Mater. Sci. Mater. Electron, 13, 727 (2002).CrossRefGoogle Scholar
Ryu, H., Ahn, H., Kim, K., Ahn, J., Lee, J., and Cairns, E., J. Power Sources, 140, 365 (2005).CrossRefGoogle Scholar
Marmorstein, D., Yu, T. H., Striebel, K. A., McLarnon, F. R., Hou, J., and Cairns, E. J., J. Power Sources, 89, 219 (2000)CrossRefGoogle Scholar
Yamin, H. and Peled, E., J. Power Sources, 9, 281 (1983).CrossRefGoogle Scholar
Yamin, H., Penciner, J., Gorenshtain, A., Elam, M., and Peled, E., J. Power Sources, 14, 129 (1985).CrossRefGoogle Scholar
Yamin, H., Gorenshtein, A., Penciner, J., Sternberg, Y., and Peled, E., J. Electrochem. Soc., 135, 1045 (1988).CrossRefGoogle Scholar
Marmorstein, D., Yu, T.H., Striebel, K.A., McLarnon, F.R., Hou, J., and Cairns, E.J. J. Power Sources, 89. 219 (2000).CrossRefGoogle Scholar
Jin, B., Kim, J., and Gu, H., J. Power Sources, 117, 148 (2003).CrossRefGoogle Scholar
Peled, E., Gorenshtain, A., Segal, M., and Sternberg, Y., J. Power Sources, 26, 269 (1989).CrossRefGoogle Scholar
Evans, A., Montenegro, M. I., and Pletcher, D., Electrochem. Commun., 3, 514 (2001).CrossRefGoogle Scholar
Etacheri, V., Marom, R., Elazari, R., Salitra, G. and Aurbach, D., Energy Environ. Sci., 4, 32433262 (2011).CrossRefGoogle Scholar
Manthiram, A., Fu, Y., and Su, Y.-S., Accounts of chemical Research, 46, 5, 11251134 (2013).CrossRefGoogle Scholar
Ji, X., Lee, K. T., Nazar, L. F., Nature Materials, 8, (2009).CrossRefGoogle Scholar
Chen, S. -R, Zhai, Y. –P., Xu, G. –L., Jiang, Y. –X., Zhao, D.-Y., Li, J. –T., Huang, L., and Sun, S. –G., Electrochemica Acta, 56, 9549 (2011).CrossRefGoogle Scholar
Zhang, K., Zhao, Q., Tao, Z., and Cheng, J., Nano Res, 6 (1), 38 (2013).CrossRefGoogle Scholar
Ding, B., Yuan, C., Shen, L., Xu, G., Nie, P., and Zhang, X., Chem. Eur. J., 19, 1013 (2013 ).CrossRefGoogle Scholar
Li, X., Cao, Y., Qi, W., Saraf, L. V., Xiao, J., Nie, Z., Mietek, J., Zhang, J. –G., Schwenzer, B., and Liu, J., J. Mater. Chem, 21, 16603 (2011).CrossRefGoogle Scholar
Sun, F., Wang, J., Chen, H., Li, W., Qiao, W., Long, D., and Ling, L., ACS Appl. Mater. Interface, 5, 5630 (2013).CrossRefGoogle ScholarPubMed
Zhang, S. S., J. Power Sources, 162, 13791394 (2006).CrossRefGoogle Scholar
Mikhaylik, Y.V., US Patent 7354680 (2008).Google Scholar
Jeong, S.S., Lim, Y.T., Choi, Y.J., Cho, G.B., Kim, K.W., Ahn, H. J., and Cho, K. K., J. Power Sources, 174, 2, (2007).CrossRefGoogle Scholar
Behzadirad, M., Lavrova, O., Busani, T., Submitted and under revision, J. Power Sources. Google Scholar
Su, Y. –S., Fu, Y., Cochell, T., and Manthiram, A., Nat. Commun., 4, 2985 (2013).CrossRefGoogle Scholar