Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T10:05:46.236Z Has data issue: false hasContentIssue false

Theoretical Studies of the Structures of the Liquid-Vapor Interfaces of Metals and Binary Alloys

Published online by Cambridge University Press:  10 February 2011

Stuart A. Rice
Affiliation:
Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, IL 60637
Meishan Zhao
Affiliation:
Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, IL 60637
Dmitriy Chekmarev
Affiliation:
Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, IL 60637
Get access

Abstract

We report the results of self-consistent quantum Monte Carlo simulations of the structure of the liquid-vapor interfaces of Ga and of alloys of Bi in Ga and In in Ga. The single particle density distribution along the normal to the interface is predicted to display stratification, with a spacing of about an atomic diameter, and the pair structure function in the plane of the liquid-vapor interface is predicted to be essentially the same as that in the bulk liquid. In all of the cases considered the qualitative and quantitative character of these predictions are in good agreement with the results of experimental studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rice, S.A., Gryko, J. and Mohanty, U., “Structure and Properties of the Liquid-Vapor Interface of a Simple Metal” in Fluid Interfacial Phenomena, edited by Croxton, C. A., John Wiley & Sons, 1986.Google Scholar
2. Allen, J. W. and Rice, S. A., J. Chem. Phys. 67, 5105 (1977).Google Scholar
3. Allen, J. W. and Rice, S. A., J. Chem. Phys. 68, 5053 (1978).Google Scholar
4. D'Evelyn, M. P. and Rice, S. A., Phys. Rev. Lett. 47, 1844 (1981).Google Scholar
5. D'Evelyn, M. P. and Rice, S. A., J. Chem. Phys. 78, 5081 (1983).Google Scholar
6. D'Evelyn, M. P. and Rice, S. A., J. Chem. Phys. 78, 5225 (1983).Google Scholar
7. D'Evelyn, M. P. and Rice, S. A., Discuss. Faraday Soc. 16, 71 (1982).Google Scholar
8. Harris, J. G., Gryko, J. and Rice, S. A., J. Chem. Phys. 87, 3069 (1987).Google Scholar
9. Harris, J. G., Gryko, J. and Rice, S. A., J. Stat. Phys. 48, 1109 (1987).Google Scholar
10. Harris, J. G. and Rice, S. A., J. Chem. Phys. 86, 7531 (1987).Google Scholar
11. Gryko, J. and Rice, S. A., J. Phys.: Metal Phys. 12, L245 (1982).Google Scholar
12. Gryko, J. and Rice, S. A., J. Non-Crystalline Solids 61–62, 703 (1984).Google Scholar
13. Gryko, J. and Rice, S. A., J. Chem. Phys. 80, 6318 (1984).Google Scholar
14. Rice, S. A., J. Non-Crystalline Solids 205–207, 755 (1996).Google Scholar
15. Gomez, A. and Rice, S. A., J. Chem. Phys. 101, 8094 (1994).Google Scholar
16. Zhao, M., Chekmarev, D., Cai, Z. and Rice, S. A., Phys. Rev. E, in press (1997).Google Scholar
17. Zhao, M., Chekmarev, D. and Rice, S. A., J. Chem. Phys., submitted (1997).Google Scholar
18. Magnissen, O. M., Ocko, B. M., Regan, M. J., Berman, L. E., Pershan, P. S. and Deutsch, M., Phys. Rev. Lett. 74, 4444 (1995).Google Scholar
19. Regan, M. J., Kawamoto, E. H., Lee, S., Pershan, P. S., Maskil, N., Deutsch, M., Magnissen, O. M., Ocko, B. M. and Berman, L. E., Phys. Rev. Lett. 75, 2498 (1995).Google Scholar
20. Regan, M. J., Magnissen, O. M., Kawamoto, E. H., Pershan, P. S., Ocko, B. M., Maskil, N., Deutsch, M., Lee, S., Penanen, K. and Berman, L. E., J. Non-Crystalline Solids 205–207, 762 (1996).Google Scholar
21. Regan, M. J., Tostmann, H.C., Pershan, P.S., Magnussen, O.M., DiMasi, E., Ocko, B.M. and Deutsch, M., Phys. Rev. B 55, 10786 (1997).Google Scholar
22. Regan, M. J., Pershan, P. S., Magnussen, O. M., Ocko, B. M., Deutsch, M. and Berman, L. E., Phys. Rev. B54, 9730 (1996).Google Scholar
23. Regan, M. J., Pershan, P. S., Magnussen, O. M., Ocko, B. M., Dentsch, M. and Berman, L. E., Phys. Rev. B. 55, 15874 (1997)Google Scholar
24. Thomas, B. N., Barton, S. W., Novak, F. and Rice, S. A., J. Chem. Phys. 86, 1036 (1987).Google Scholar
25. Flom, E. B., Li, M., Acero, A., Maskil, N. and Rice, S. A., Science 260, 332 (1993).Google Scholar
26. Flom, E. B., Cai, Z., Acero, A. A., Lin, B., Maskil, N., Liu, L. and Rice, S. A., J. Chem. Phys. 96, 4743 (1992).Google Scholar
27. Lei, N., Huang, Z.-q. and Rice, S. A., J. Chem. Phys. 104, 4802 (1996).Google Scholar
28. Lei, N., Huang, Z.-q. and Rice, S. A. and Grayce, C., J. Chem. Phys. 105, 9615 (1996).Google Scholar
29. Lei, N., Huang, Z.-q. and Rice, S. A., J. Chem. Phys. 107, 4051 (1997).Google Scholar
30. Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).Google Scholar
31. Eguiluz, A. G., Campbell, D. A., Maradudin, A. A. and Wallis, R. F., Phys. Rev. B 30, 5449(1984).Google Scholar
32. Zhao, M. and Rice, S. A., work in progress. (SnGa)Google Scholar
33. Celestini, F., Ercolessi, F. and Tosatti, E., Phys. Rev. Lett. 78, 3153 (1997).Google Scholar
34. Woo, C. H., Wang, S. and Matsuura, M.,, J. Phys. F: Metal Phys., 5, 1836 (1975).Google Scholar
35. Matsuura, M., Woo, C. H. and Wang, S., J. Phys. F: Metal Phys., 5, 1849 (1975).Google Scholar
36. Rowlinson, J. S. and Widom, B., Molecular Theory of Capillarity, Clarendon, Oxford (1984).Google Scholar
37. Triezenberg, D. G. and Zwanzig, R. W., Phys. Rev. Lett. 28, 1183 (1972).Google Scholar