Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T00:59:27.575Z Has data issue: false hasContentIssue false

Theories of Alloy Ordering - Overview and Forecast

Published online by Cambridge University Press:  21 February 2011

Philip C. Clapp*
Affiliation:
Department of Metallurgy and Institute of Materials Science, University of Connecticut, Storrs, CT 06268
Get access

Abstract

The task of any alloy ordering theory simply put is to predict from a small amount of experimental data the ordering phase transitions, their temperature, composition and crystal structure in some selected alloy system. Ideally, the experimental information needed would be not more than the atomic numbers of the alloy components involved. This paper attempts to assess the progress that has been made towards that objective, the various techniques that have been used to provide solutions and the probable avenues of most rapid progress in the next ten years. The major areas that will be reviewed are Ising model approaches, many body interaction approaches, computer simulation techniques, and first principle calculations. It will be argued that we are on the verge of some quite exciting breakthroughs in the field of alloy phase prediction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Ising, E., Z. f. Physik 31, 253(1925).Google Scholar
2) Onsager, L., Phys. Rev. 65, 117 (1944).CrossRefGoogle Scholar
3) Wilson, K. G., Phys. Rev. B4, 3174, 3184 (1971).Google Scholar
4) Clapp, P. C., Physics Letters 13, 305 (1964).CrossRefGoogle Scholar
5) Clapp, P. C. & Moss, S. C., Phys. Rev. 142, 418 (1966).Google Scholar
6) Clapp, P. C. & Moss, S. C., Phys. Rev. 171, 754 (1968).Google Scholar
7) Moss, S. C. & Clapp, P. C., Phys. Rev. 171, 764 (1968).Google Scholar
8) Richards, M. J. & Cahn, J. W., Acta Met. 19, 1263 (1971).Google Scholar
9) Allen, S. M. & Cahn, J. W., Scripta Met. 7, 1261 (1973); Acta Met. 20, 423 (1972).CrossRefGoogle Scholar
10) Kanamori, J., Prog. Theor. Phys. 35, 66 (1966).Google Scholar
11) Kudo, T. & Katsura, S., Prog. Theor. Phys. 56, 435 (1976).Google Scholar
12) Kanamori, J. & Kakehashi, Y., J. Phys. (Paris) 38, C7274 (1977).Google Scholar
13) Cowley, J. M., Phys. Rev. 77, 669 (1950); 120, 1648 (1960).CrossRefGoogle Scholar
14) Krivoglaz, M. A. & Smirnov, A. A., “The Theory of Order-Disorder in Alloys”, MacDonald, London (1964).Google Scholar
15) Wilkins, S. W., Phys. Rev. B2, 3935 (1970).CrossRefGoogle Scholar
16) Kikuchi, R., Phys. Rev. 81, 988 (1951).Google Scholar
17) Sanchez, J. M. & Fontaine, D. de, Phys. Rev. B17, 2926 (1978).Google Scholar
18) Wilson, K. G. & Fisher, M. E., Phys., Rev. Letts. 28, 240 (1972).Google Scholar
19) Kadanoff, L. P., Physics 2, 263 (1966).Google Scholar
20) Cook, H. E. & Fontaine, D. de, Acta Met. 17, 915 (1969); 18, 189 (1970).CrossRefGoogle Scholar
21) Wu, T. B., Cohen, J. B. & Yelon, W., Acta Met 30, 2065 (1982).Google Scholar
22) Wu, T. B. & Cohen, J. B., Acta Met 31, 1929 (1983).Google Scholar
23) Machlin, E. S., Acta Met. 22, 95 (1974).Google Scholar
24) Machlin, E. S., Acta Met. 22, 109 (1974).CrossRefGoogle Scholar
25) Machlin, E. S., Acta Met. 22, 367 (1974).Google Scholar
26) Machlin, E. S., Acta Met. 22, 1433 (1974).Google Scholar
27) Machlin, E. S., Acta Met. 24, 543 (1976).Google Scholar
28) Fontaine, D. de & Kikuchi, R. in “Applications of Phase Diagrams in Metallurgy & Ceramics” N.B.S. Special Publication 496 (Carter, G. C., ed.) p. 999 (1978).Google Scholar
29) Yin, M. T. & Cohen, M. L., Phys. Rev. Letts. 45, 1004 (1980).Google Scholar
30) Connolly, J. W. D. & Williams, A. R., Phys. Rev. B 27, 5169 (1983).Google Scholar
31) Wadsworth, J., Gyorffy, B. L. & Stocks, G. M. - to be published.Google Scholar