Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T01:02:20.869Z Has data issue: false hasContentIssue false

Theory and Computer Simulation of Grain-Boundary and Void Dynamics in Polycrystalline Conductors

Published online by Cambridge University Press:  15 February 2011

Dimitrios Maroudas
Affiliation:
Department of Chemical and Nuclear Engineering, University of California, Santa Barbara, CA 93106
Sokrates T. Pantelides
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
Get access

Abstract

Microstructure evolution in polycrystalline metallic thin films under stress and electric current underlies many reliability issues in microelectronics. This paper presents a quantitative analysis of grain-boundary and void dynamics based on the coupling between bulk and interfacial mass transport phenomena with elastic deformations and current stressing. The formation and growth of intergranular voids in bamboo-structure conductor lines due to stresses that develop during processing is analyzed. The analysis is aided by self-consistent simulation of bulk and grain-boundary diffusional processes using bicrystal models with elastic grains. A systematic analysis is presented of the morphological evolution of transgranular voids in aluminum lines under current densities that are typical of electromigration testing. The effects of the electric field and surface properties on the morphological stability of voids are examined and morphologies that bifurcate from rounded or wedge-like void shapes are predicted. The theoretical results are discussed in the context of experimental data for void propagation under electromigration conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ho, P. S. and Kwok, T., Rep. Prog. Phys. 52, 301 (1989).Google Scholar
2 d'Heurle, F. M. and Rosenberg, R., in Physics of thin Films, vol. 7, edited by Hass, G., Francombe, M. H., and Hofman, R. W. (Academic Press, New York, 1973), pp. 257310.Google Scholar
3 Thompson, C. V. and Lloyd, J. R., MRS Bulletin 18 (12), 1925 (1993).Google Scholar
4 Flinn, P. A., Sauter Mack, A., Besser, P. R., and Marieb, T. N., MRS Bulletin 18 (12), 2635 (1993).Google Scholar
5 Sanchez, J. E., Jr., McKnelly, L. T., and Morris, J. W., Jr., J. Electron. Mater. 19,1213 (1990).Google Scholar
6 Sanchez, J. E. Jr. and Morris, J. W. Jr., Mater. Res. Soc. Symp. Proc. 225, 53 (1991).Google Scholar
7 Sanchez, J. E. Jr., McKnelly, L. T., and Morris, J. W. Jr., J. Appl. Phys. 72, 3201 (1992).Google Scholar
8 Rose, J. H., Appl. Phys. Lett. 61, 2170 (1992).Google Scholar
9 Joo, Y.-C. and Thompson, C. V., Mater. Res. Soc. Symp. Proc. 309, 351 (1993).Google Scholar
10 Kraft, O., Bader, S., Sanchez, J. E. Jr., and Arzt, E., Mater. Res. Soc. Symp. Proc. 309, 199 (1993).Google Scholar
11 Arzt, E., Kraft, O., Nix, W. D., and Sanchez, J. E. Jr., J. Appl. Phys. 76, 1563 (1994).Google Scholar
12 Black, J. R., IEEE Trans. Electron Devices ED-16, 338 (1969).Google Scholar
13 Rosenberg, R. and Ohring, M., J. Appl. Phys. 42, 5671 (1971).Google Scholar
14 Rosenberg, R., J. Vac. Sci. Technol. 9, 263 (1972).Google Scholar
15 Kirchheim, R., Mater. Res. Soc. Symp. Proc. 309, 101 (1993).Google Scholar
16 Shatzkes, M. and Lloyd, J. R., J. Appl. Phys. 59, 3890 (1986).Google Scholar
17 Lloyd, J. R., J. Appl. Phys. 69, 7601 (1991).Google Scholar
18 Huntington, H. B., Kalukin, A., Meng, P. P., Shy, Y. T., and Ahmad, S., J. Appl. Phys .70, 1359 (1991).Google Scholar
19 Li, C.-Y., Borgesen, P., and Sullivan, T. D., Appl. Phys. Lett. 59, 1464 (1991); C.-Y. Li, P. Borgesen, and M. A. Korhonen, Appl. Phys. Lett. 61, 411 (1992).Google Scholar
20 Korhonen, M. A., Borgesen, P., and Li, C.-Y., MRS Bulletin 17 (7), 6168 (1992); P. Borgesen, M. A. Korhonen, D. D. Brown, and C.-Y. Li, Mater. Res. Soc. Symp. Proc. 309, 187 (1993).Google Scholar
21 Arzt, E. and Nix, W. D., J. Mater. Res. 6, 731 (1991).Google Scholar
22 Nix, W. D. and Arzt, E., Metall. Trans. A 23A, 2007 (1992).Google Scholar
23 Sauter, A. I. and Nix, W. D., J. Mater. Res. 7, 1133 (1992).Google Scholar
24 Suo, Z., Wang, W., and Yang, M., Appl. Phys. Lett. 64, 1944 (1994); Z. Suo and W. Wang, J. Appl. Phys. 76, 3410 (1994); W. Yang, W. Wang, and Z. Suo, J. Mech. Phys. Solids 42, 897 (1994).Google Scholar
25 Ma, Q. and Suo, Z., J. Appl. Phys. 74, 5457 (1993).Google Scholar
26 Kwok, T., SPIE Proceedings 1596, 6071 (1991).Google Scholar
27 Bower, A. F. and Freund, L. B., J. Appl. Phys. 74, 3855 (1993).Google Scholar
28 Pantelides, S. T., J. Appl. Phys. 75, 3264 (1994).Google Scholar
29 Pantelides, S. T., Maroudas, D., and Laks, D. B., Mater. Sci. Forum 143–147, 1 (1994); in Computational Material Modeling, edited by A. K. Noor and A. Needleman (The American Society of Mechanical Engineers, New York,1994); pp. 1-21; D. B. Laks, D. Maroudas, and S. T. Pantelides, Mater. Res. Soc. Symp. Proc. 317, 449 (1994).Google Scholar
30 Burnett, D. S., Finite Element Analysis (Addison-Wesley, Reading, MA, 1987); G. F. Carey and J. T. Oden, Finite Elements. A Second Course (Prentice-Hall, Englewood Cliffs, NJ, 1983); R. A. Brown, AIChE J. 34, 881 (1988).Google Scholar
31 Kubicek, M.and Marek, M., Computational Methods in Bifurcation Theory and Dissipative Structures (Springer-Verlag, New York, 1983).Google Scholar
32 Herring, C., J. Appl. Phys. 21, 437 (1950); in Physics of Powder Metallurgy, edited by W. E. Kingston (McGraw-Hill, New York, 1951).Google Scholar
33 Mullins, W. W., J. Appl. Phys. 28, 333 (1957); 30, 77 (1959).Google Scholar
34 Landau, L. D. and Lifshitz, E. M., Course on Theoretical Physics, vol. 7: Theory of Elasticity (Pergamon Press, Oxford, 1986 1986).Google Scholar
35 Yip, S. and Wolf, D., Mater. Sci. Forum 46, 77 (1989).Google Scholar
36 Ho, P. S., J. Appl. Phys. 41, 64 (1970).Google Scholar
37 Dahlquist, G. and Björck, A., Numerical Methods (Prentice-Hall, Englewood Cliffs, NJ, 1974).Google Scholar
38 Maroudas, D. and Pantelides, S. T., Mater. Res. Soc. Symp. Proc. 309, 333 (1993).Google Scholar
39 Madden, M. C., Abratowski, E. V., Marieb, T., and Flinn, P. A. Mater. Res. Soc. Symp. Proc., 265, 33 (1992).Google Scholar
40 Iooss, G. and Joseph, D. D., Elementary Stability and Bifurcation Theory (Springer-Verlag, New York, 1990).Google Scholar