Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T14:06:26.790Z Has data issue: false hasContentIssue false

Theory of Addition Spectra in Double Quantum Dots: Single-Particle Tunneling vs Coulomb Interactions

Published online by Cambridge University Press:  10 February 2011

M. Rontani
Affiliation:
Istituto Nazionale per la Fisica della Materia and Dipartimento di Fisica, Università degli Studi di Modena e Reggio Emilia, Via Campi 213/a, 41100 Modena, Italy
F. Rossi
Affiliation:
Istituto Nazionale per la Fisica della Materia and Dipartimento di Fisica, Università degli Studi di Modena e Reggio Emilia, Via Campi 213/a, 41100 Modena, Italy
F. Manghi
Affiliation:
Istituto Nazionale per la Fisica della Materia and Dipartimento di Fisica, Università degli Studi di Modena e Reggio Emilia, Via Campi 213/a, 41100 Modena, Italy
E. Molinari
Affiliation:
Istituto Nazionale per la Fisica della Materia and Dipartimento di Fisica, Università degli Studi di Modena e Reggio Emilia, Via Campi 213/a, 41100 Modena, Italy
Get access

Abstract

We study coupled semiconductor quantum dots theoretically using a generalized Hubbard approach, where intra- and inter-dot Coulomb correlation, as well as tunneling effects are described on the basis of realistic electron wavefunctions. We find that the ground-state configuration of vertically coupled double dots undergoes non-trivial quantum transitions as the inter-dot distance d changes; at intermediate values of d we predict a new phase that should be observable in the addition spectra and in the magnetization changes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jacak, L., Hawrylak, P., and Wójs, A., Quantum Dots (Springer, Berlin, 1998).10.1007/978-3-642-72002-4Google Scholar
2. In Palacios, J.J. and Hawrylak, P., Phys. Rev. B 51, 1769 (1995) the high magnetic field regime is investigated; in Y. Asano, Phys. Rev. B 58, 1414 (1998) the configurations with N > 12 are studied within a °Core' approximation that could fail when the coupling between dots is strong; H. Tamura, Physica B 249–251 210 (1998) is a Hartree-Fock study, and Y. Tokura et al., Proc. 24th Internat. Conference on the Physics of Semiconductors, edited by D. Gershoni, World Scientific (1999), to be published, is an exact diagonalization study for N ≤ 5.10.1103/PhysRevB.51.1769+12+are+studied+within+a+°Core'+approximation+that+could+fail+when+the+coupling+between+dots+is+strong;+H.+Tamura,+Physica+B+249–251+210+(1998)+is+a+Hartree-Fock+study,+and+Y.+Tokura+et+al.,+Proc.+24th+Internat.+Conference+on+the+Physics+of+Semiconductors,+edited+by+D.+Gershoni,+World+Scientific+(1999),+to+be+published,+is+an+exact+diagonalization+study+for+N+≤+5.10.1103/PhysRevB.51.1769>Google Scholar
3. Hubbard-like hamiltonians for QDs are also used in Bryant, G.W., Phys. Rev. B 48, 8024 (1993); G. Klimeck, G. Chen, and S. Datta, Phys. Rev. B 50, 2316 (1994); R. Kotlyar and S. Das Sarma, fhys. Rev. B 56, 13235 (1997).10.1103/PhysRevB.48.8024Google Scholar
4. Austing, D.G., Honda, T., and Tarucha, S., Jpn. J. Appl. Phys. 36, 1667 (1997); D.G. Austing, T. Honda, K. Muraki, Y. Tokura, S. Tarucha, Physica B 249–251, 206 (1998).10.1143/JJAP.36.1667Google Scholar
5. The same approach was introduced for the case of isolated QDs giving addition spectra in good agreement with experiments [Rontani, M., Rossi, F., Manghi, F., and Molinari, E., Appl. Phys. Lett. 72, 957 (1998); Phys. Rev. B 59, 10165 (1999)]. In that case, however, the Hubbard hamiltonian reduces to an effective one-body hamiltonian since t and the inter-dot integrals are zero.10.1063/1.120933Google Scholar
6. Eto, M., Solid-State Electronics 42, 1373 (1998).10.1016/S0038-1101(98)00033-1Google Scholar
7. Oosterkamp, T.H., Godijn, S.F., Uilenreef, M.J., Nazarov, Y.V., Vaart, N.C. van der, Kouwenhoven, L.P., Phys. Rev. Lett. 80, 4951 (1998).10.1103/PhysRevLett.80.4951Google Scholar
8. Waugh, F.R., Berry, M.J., Mar, D.J., Westervelt, R.M., Campman, K.L., Gossard, A.C., Phys. Rev. Lett. 75, 705 (1995).10.1103/PhysRevLett.75.705Google Scholar
9. Livermore, C., Crouch, C.H., Westervelt, R.M., Campman, K.L., Gossard, A.C., Science 274, 1332 (1996).10.1126/science.274.5291.1332Google Scholar
10. Wang, T.H. and Tarucha, S., Appl. Phys. Lett. 71, 2499 (1997).10.1063/1.120100Google Scholar
11. Blick, R.H., Pfannkuche, D., Haug, R.J., Klitzing, K. von, Eberl, K., Phys. Rev. Lett. 80, 4032 (1998).10.1103/PhysRevLett.80.4032Google Scholar
12. Interesting deviations from predictions of simple capacitance models are however reported in Refs. [7, 8].Google Scholar
13. DQDs with different geometries, obtained by cleaved-edge or self-organized growth, have recently become available but were so far investigated mostly by optical experiments. See e.g. Schedelbeck, G., Wegscheider, W., Bichler, M., Abstreiter, G., Science 278, 1792 (1997); N.N. Ledentsov et al., Phys. Rev. B 54, 8743 (1996); R. Cingolani et al. (1999), unpublished.10.1126/science.278.5344.1792Google Scholar