Published online by Cambridge University Press: 10 February 2011
We study coupled semiconductor quantum dots theoretically using a generalized Hubbard approach, where intra- and inter-dot Coulomb correlation, as well as tunneling effects are described on the basis of realistic electron wavefunctions. We find that the ground-state configuration of vertically coupled double dots undergoes non-trivial quantum transitions as the inter-dot distance d changes; at intermediate values of d we predict a new phase that should be observable in the addition spectra and in the magnetization changes.