Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T09:04:10.106Z Has data issue: false hasContentIssue false

Theory of Electrically Controlled Resonant Tunneling Spin Devices

Published online by Cambridge University Press:  15 March 2011

David Z.-Y. Ting
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, U.S.A.
Xavier Cartoixà
Affiliation:
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.
Get access

Abstract

We report device concepts that exploit spin-orbit coupling for creating spin polarized current sources using nonmagnetic semiconductor resonant tunneling heterostructures, without external magnetic fields. The resonant interband tunneling spin filter exploits large valence band spin-orbit interaction to provide strong spin selectivity. The bi-directional spin pump induces the simultaneous flow of oppositely spin-polarized current components in opposite directions through spin-dependent resonant tunneling. The efficiency of resonant tunneling spin devices can be improved when the effects of structural inversion asymmetry (SIA) and bulk inversion asymmetry (BIA) are combined properly, and incorporated into device design. The current spin polarizations of the proposed devices are electrically controllable, and potentially amenable to high-speed modulation. In principle, the electrically modulated spin-polarized current source could be integrated in optoelectronic devices for added functionality.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., Molnar, S. von, Roukes, M. L., Chtchelkanova, A. Y., and Treger, D. M., Science 294 1488 (2001).Google Scholar
2. Voskoboynikov, A., Lin, S. S., Lee, C. P., and Tretyak, O., J. Appl. Phys. 87, 387 (2000).Google Scholar
3. Koga, T., Nitta, J., Takayanagi, J.H., and Datta, S., Phys. Rev. Lett. 88 12661 (2002).Google Scholar
4. Ting, D. Z-Y. and Cartoixà, X., Appl. Phys. Lett. 81, 4198 (2002).Google Scholar
5. Ting, D. Z-Y., Cartoixà, X., Chow, D. H., Moon, J. S., Smith, D. L., MCGill, T. C. and Schulman, J. N., IEEE Proceedings 91 741 (2003).Google Scholar
6. Ting, D. Z-Y. and Cartoixà, X., Appl. Phys. Lett. 83, 1391 (2003).Google Scholar
7. Hall, K. C., Lau, W. H., Gundogdu, K., Flatte, M. E. and Boggess, T. F., Appl. Phys. Lett. 83, 2937 (2003).Google Scholar
8. Bychkov, Y. A. and Rashba, E. I., J. Phys. C - Solid State Phys. 17, 6039 (1984).Google Scholar
9. Silva, E. A. de Andrada e and Rocca, G. C. La, Phys. Rev. B 59, 15583 (1999).Google Scholar
10. Ting, D. Z.-Y. and Cartoixà, X., Phys. Rev. B 68, 235320 (2003).Google Scholar
11. Hirsch, J. E., Phys. Rev. Lett. 83, 1834 (1999).Google Scholar
12. Ting, D. Z.-Y., Yu, E. T., and McGill, T. C., Phys. Rev. B 45, 3583 (1992).Google Scholar
13. Chang, Y.-C., Phys. Rev. B 37, 8215 (1988).Google Scholar
14. Bowen, R. C., Klimeck, G., Lake, R. K., Frensley, W. R., andMoise, T., J. Appl. Phys. 81, 3207 (1997); W. R. Frensley, private communications.Google Scholar
15. Winkler, R., Phys. Rev. B 69, 045317 (2004).Google Scholar
16. Cartoixà, X., Ting, D. Z.-Y., and McGill, T. C., Phys. Rev. B 68, 235319 (2003).Google Scholar
17. Moon, J. S. et al. (unpublished).Google Scholar
18. Oestreich, M., Bender, M., Hubner, J., Hagele, D., Ruhle, W. W., Hartmann, T., Klar, P. J., Heimbrodt, W., Lampalzer, M., Volz, K., Stolz, W., Semicond. Sci. Technol. 17, 285 (2002).Google Scholar