Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T06:58:08.275Z Has data issue: false hasContentIssue false

Theory of Hydrogen Complexes in Si

Published online by Cambridge University Press:  26 February 2011

S. B. Zhang
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
W. B. Jackson
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
Get access

Abstract

The predominance of Si-H bonding and the origin of {111} platelets in hydrogenated Si remain important unsolvedproblems in the study of H in Si.Recent theoretical and experimental results indicate that H predominately enters the Si network in pairs. A promising diatomic H configuration consists of a bond centered H closely associated with an antibonding centered H. In this work, we show that adjacent diatomic H pairs have a binding energy of 0.2 eV/2H. The binding originates from relaxation of strained Si-Si backbonds. Further clustering of the H pairs eliminates all strained bonds, forming a hydrogenated platelet oriented along the {111} plane. The binding energy of 3.95 eV/2H for the platelet is 0.15 eV lower than that for interstitial H2 molecules in c-Si. Lattice expansion makes the platelets energetically more competitivewith the lowest energy Si-H bonding confi gration at hydrogenated Si (111) surfaces. These higher level complexes explainthe formation of platelets, Raman spectra, and absence of gap states in hydrogenated c- Si as well as the clustered phaseseen in NMR and of H evolution and diffusion in hydrogenated amorphous Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Van de Walle, C.G., Denteneer, P.J., Bar-Yam, Y. and Pantelides, S.T., Phys. Rev. B 39, 10791 (1989).Google Scholar
2. Chang, K.J. and Chadi, D.J., Phys. Rev. B. 40, 11644 (1989).CrossRefGoogle Scholar
3. Ponce, F. A., Johnson, N. M., Tramontana, J. C., and Walker, J., Inst. Phys. Conf. Ser. No. 87: Sect. 1, 49 (1987).Google Scholar
4. Boyce, J. B., Ready, S. E., Stutzmann, M., and Norberg, R. E., Jour. of Non-Crystalline Solids, 114, 211 (1989).CrossRefGoogle Scholar
5. Chenevas-Paule, A. and Bourret, A., Jour. of Non-Crystalline Solids 59&60, 233 (1983).CrossRefGoogle Scholar
6. Bellissent, R. in Amorphous Silicon and Related Materials, Fritzsche, H., ed. (World Scientific Publishing, Singapore, 1988), p. 93;Google Scholar
Bellissent, R., Chenevas-Paule, A. and Roth, M., Jour. of Non-Crystalline Solids 59&60, 229 (1983).Google Scholar
7. Reimer, J. A., Vaughan, R.W., and Knights, J.C., Phys. Rev. B 24, 3360 (1981).Google Scholar
8. Johnson, N.M., Ponce, F.A., Street, R.A., and Nemanich, R.J., Phys. Rev. B 35, 4166 (1987).CrossRefGoogle Scholar
9. Johnson, N.M., Doland, C., Ponce, F., Walker, J., and Anderson, G., Prodeeding of the 6th Trieste Semiconductor Symposium, Aug. 27–31, 1990, in press.Google Scholar
10. Cohen, M.L., Phys. Scr. T1, 5 (1982).Google Scholar
11. Wigner, E., Trans. Faraday Soc. 34, 678 (1938).CrossRefGoogle Scholar
12. Ihm, J., Zunger, A., and Cohen, M.L., J. Phys. C 12, 4401 (1979).Google Scholar
13. Hellmann, H., Einführung in der Quanten Theorie (Deuticke, Leipzig, 1937), p. 285;Google Scholar
Feynman, R.P., Phys. Rev. 56, 340 (1939).CrossRefGoogle Scholar
14. Northrup, J.E. and Cohen, M.L., Phys. Rev. Lett. 49, 1349 (1982);Google Scholar
Pandey, K.C., Phys. Rev. Lett. 47, 1913 (1981).Google Scholar
15. Chang, K.J. and Chadi, D.J., unpublished.Google Scholar
16. Higashi, G. S., Chabal, Y. J., Trucks, G. W. and Raghavachari, K., Appl. Phys. Lett. 56, 656 (1990).CrossRefGoogle Scholar
17. Williamson, D. L., Mahan, A. H., Nelson, B. P. and Crandall, R. S., Jour. of Non-Crystalline Solids 114, 226 (1989).Google Scholar