Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-01T12:22:48.906Z Has data issue: false hasContentIssue false

Thermal and Mechanical Characterization of Jute-Biopol Nanophased Green Composites

Published online by Cambridge University Press:  28 January 2011

Mohammad K Hossain
Affiliation:
Center for Advanced Materials (T-CAM), Tuskegee University 101 Chappie James Center, Tuskegee, AL 36088, U.S.A.
Mohammad W Dewan
Affiliation:
Center for Advanced Materials (T-CAM), Tuskegee University 101 Chappie James Center, Tuskegee, AL 36088, U.S.A.
Mahesh Hosur
Affiliation:
Center for Advanced Materials (T-CAM), Tuskegee University 101 Chappie James Center, Tuskegee, AL 36088, U.S.A.
Shaik Jeelani
Affiliation:
Center for Advanced Materials (T-CAM), Tuskegee University 101 Chappie James Center, Tuskegee, AL 36088, U.S.A.
Get access

Abstract

Surface modification of jute fibers was accomplished by performing chemical treatments including detergent washing, dewaxing, alkali, and acetic acid treatment. Morphology of modified surfaces examined using scanning electron microscopy (SEM) revealed improved surfaces for better adhesion with matrix. Better thermal performance of treated fibers was found from thermogravimetric analysis (TGA). Enhanced tensile properties of treated fibers were obtained from tensile tests. Using solution intercalation technique and magnetic stirring, 2%, 3%, and 4% by weight Montmorillonite K10 nanoclay were dispersed into a biodegradable polymer, Biopol. Thermal performance of nanoclay infused Biopol characterized using dynamic scanning calorimetry (DSC) showed improved degree of crystallinity by 7%. Jute fiber reinforced Biopol biocomposites with and without nanoclay were manufactured using treated and untreated jute fibers by compression molding process. Thermal and mechanical responses of treated fiber reinforced Biopol composites (TJBC) without nanoclay evaluated using dynamic mechanical analysis (DMA) and flexure tests showed 9% and 12% increase in storage modulus and flexure strength, respectively, compared to untreated jute fiber reinforced composites (UTJBC). The respective values were 100% and 35% for 4% nanoclay infused TJBC compared to UTJBC without nanoclay.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Doan, T., Gao, S., and Mader, E., Compos. Sci. Technol. 66, 952 (2006).Google Scholar
2. Zini, E., Focarete, M.L., Noda, I., and Scandola, M., Compos. Sci. Technol. 67, 2085(2007).Google Scholar
3. John, M.J., and Thomas, S., Carbohydr. Polym. 71, 343 (2008).Google Scholar
4. Corrales, F., Vilaseca, F., Llop, M., Girones, J., Mendez, J.A., and Mutje, P., J. Hazard. Mater. 144, 730 (2007).Google Scholar
5. Pejic, B.M., Kostic, M.M., Skundric, P.D., and Praskalo, J.Z., Biosour. Technol. 99, 2686 (2008).Google Scholar
6. Ray, D., and Sarkar, B.K., J. Appl. Polym. Sci. 80, 1013 (2001).Google Scholar
7. Wong, S., Shanks, R., and Hodzic, A., Compos. Sci. Technol. 64, 1321 (2004).Google Scholar
8. Zini, E., Bairado, M., and Scandola, M., Macromol. Biosci. 4, 286 (2004).Google Scholar
9. Sudesh, K., Abe, H., and Doi, Y., Progr. Polym. Sci. 25, 1503 (2000).Google Scholar
10. Barkoula, N.M., Garkhail, S.K., and Peijs, T., Indus. Crops. Prod. 1, 34 (2010).Google Scholar
11. Bruzaud, S., and Bourmaud, A., Polym. Test. 26, 652 (2007).Google Scholar
12. Huang, G., and Netravali, A., Compos. Sci. Technol. 67, 2005 (2005).Google Scholar
13. Vilaseca, F., Mendez, J.A., Pelach, A., Llop, M., Canigueral, N., Girones, J., Turon, X., and Mutje, P., Process Biochem. 42, 329 (2007).Google Scholar
14. Wang, S., Song, C., Chen, G., , G., Guo, T., Liu, J., Zhang, B., and Takeuchi, S., Polym. Degrad. Stab. 87, 69 (2004).Google Scholar
15. Singh, S., Mohanty, A.K., Sugie, T., Takai, Y., and Hamada, H., Composites Part A. 39, 875 (2008).Google Scholar
16. Saha, P., Manna, S., Chowdhury, S.R., Sen, R., Roy, D., and Adhikari, B., Bioresour. Technol. 101, 3182 (2010).Google Scholar
17. Martins, M.A., Kiyohara, P.K., and Joekes, I., J. Appl. Polym. Sci. 94, 2333 (2004).Google Scholar
18. Renstad, R., Karlsson, S., Albertsson, A.C., Werner, P.E., and Westdahl, M., Polym. Int. 43, 201 (1997).Google Scholar
19. Khan, M.A., and Ganster, J., Fink, H.P., Composites Part A. 40, 846 (2009).Google Scholar