Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T05:01:07.227Z Has data issue: false hasContentIssue false

Thermal Donor Removal by Rapid Thermal Annealing: Infrared Absorption

Published online by Cambridge University Press:  28 February 2011

Herman J. Stein
Affiliation:
Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185
S. K. Hahn
Affiliation:
Siltec Corporation, Mountain View, CA 94043
S. C. Shatas
Affiliation:
AG Associates, Palo Alto, CA 94303
Get access

Abstract

Rapid thermal annealing of thermal donors in Si with 10 sec anneal times at temperatures between 600 and 1000 °C has been investigated by infrared absorption at 80 K. Thermal donors A through D, which are identified by excited state absorption, are present in as-grown Czochralski Si; whereas excited states for donors A through F as well as photoionization of thermal donors are observed after extended heating at 450 °C. The temperature required for rapid thermal annealing is lower when only donors A through D are present. Removal of thermal donors A through F by rapid thermal annealing at temperatures > 800°C restores 7 to 8 oxygen atoms to interstitial sites per electricallӯ measured donor removed. This ratio supports oxygen cluster models for thermal donors but does not support previous suggestions that such clusters are embryonic forms of high temperature oxygen precipitates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.For recent discussions on ther'al donors in silicon see “Proc. 13 th International Conf. on Defects in Semiconductors” edited by Kimerling, L. C. and Parsey, J. M. Jr, The Metallurgical Society AIME (1985) pp. 129146 and pp. 639-733.Google Scholar
2. Benton, J. L., Kimerling, L. C. and Stavola, M., Physica 116B, 271 (1983).Google Scholar
3. Kaiser, W. and Keck, P. H., J. Appl. Phys. 28, 822 (1957).Google Scholar
4. Irvin, J. C., Bell System Tech. J., 41, 387– (1962).Google Scholar
5. Pollard, C. J., Speight, J. D. and Barraclough, K.-l., Matl. Sci. Proc. Vol. 13, edited by Narayan, J., Brown, W. L. and Lemons, R. A., Elsevier Sci. Publ. Co., Inc. (1984) p. 413.Google Scholar
6. Hahn, S. K., Hung, D., Shatas, S. and Rek, S., ECS Proc. Vol. 84–7, edited by Bean, K. E. and Rozgonyi, G., The Electrochem. Soc. Inc., Pennington, NJ (1984) p. 85.Google Scholar
7. O'Mara, W. C., Parker, J. E., Butler, P. and Gat, A., Appl. Phys. Lett. 46, 299 (1985).Google Scholar
8. Wada, K., Phys. Rev. B 30, 5884 (1984).Google Scholar
9. Stein, H. J. and Pe-ercy, P. S., Mat. Res. Soc. Symp. Proc. Vol. 13, edited by Narayan, J., Brown, W. L. and Lemons, R. A., Elsevier Sci. Pub. Co., Inc. (1983) p. 229.Google Scholar
10. Mikkelsen, J. C., Appl. Phys. Lett. 40, 336 (1982).Google Scholar
11. Kokorowski, S. A., Olson, G. L. and Hess, L. D., J. Appl. Phys. 53, 921 (1982).CrossRefGoogle Scholar