Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T14:00:00.815Z Has data issue: false hasContentIssue false

Thermal Stability of Ohmic Contacts to n-InxGa1−xN

Published online by Cambridge University Press:  21 February 2011

A. Duibha
Affiliation:
University of Florida, Gainesville FL 32611
S. J. Pearton
Affiliation:
University of Florida, Gainesville FL 32611
C. R. Abernathy
Affiliation:
University of Florida, Gainesville FL 32611
J. W. Lee
Affiliation:
University of Florida, Gainesville FL 32611
P. H. Holloway
Affiliation:
University of Florida, Gainesville FL 32611
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill NJ 07974
Get access

Abstract

The microstructural properties and interdiffusion reactions of Au/Ge/Ni, Ti/Pt/Au, WSix and AuBe contacts on GaN and In0.5Ga0.5N have been examined using Scanning Electron Microscopy and Auger Electron Spectroscopy. The WSix contacts possess excellent thermal stability and retained good structural properties at annealing temperatures as high as 800°C on GaN. The electrical characteristics of WSix contacts on In0.5Ga0.5N had a specific contact resistivity of 1.48×10−5Ωcm2 and an excellent surface morphology following annealing at 700°C. The increase in contact resistance observed at higher temperatures was attributed to intermixing of metal and semiconductor. In contrast the Ti/Pt/Au and Au/Ge/Ni contacts were stable only to ≤ 500°C. AuBe contacts had the poorest thermal stability, with substantial reaction with GaN occurring even at 400°C. The WSix contact appears to be an excellent choice for high temperature GaN electronics applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Amano, H., Kito, M., Hiramatsu, X. and Akaski, I., Jpn. J. Appl Pys. 28, L2112 (1989)Google Scholar
2 Nakamura, S., Mukai, T. and Seno, M., Jpn. J. Appl. Phys. 2Q L1998 (1991).Google Scholar
3 Khan, M. A., N .Kuznia, J., Bhattarai, A. R. and Olson, D. T., Appl. Phys. Lett. 63, 1786 (1993).Google Scholar
4 Khan, M. A., Bhattarai, A., Kuznia, J. N. and Olson, D. T., Appl. Phys. Lett. 63, 1214 (1993).Google Scholar
5 Foresi, J. S. and Moustakas, T. D., Appl. Phys. Lett. 82, 2859 (1993).Google Scholar
6 Lin, M. E., Ma, Z., Huang, F. Y., Fan, Z. F., Allen, L. H. and Morkoc, H., Appl. Phys. Lett. 64, 1003 (1994).Google Scholar
7 Lin, M. E., Huang, F. Y. and Morkoc, H., Appl. Phys. Lett. 64, 2557 (1994).Google Scholar
8 Stareev, G., Kunzel, H. and Portmann, G., J. Appl. Phys. 24, 7344 (1993).Google Scholar
9 Lahav, A., Genut, M., Materials Science and Engineering BJZ, 231 (1990).Google Scholar
10 Henry, B. M., Staton-Beran, A. E., Sharma, V., Crouch, M. A. and Gill, S. S., Materials Res. Soc. Symp. Proc. 240, 431 (1992).Google Scholar