No CrossRef data available.
Article contents
Thermal Tempering of Bulk Metallic Glasses
Published online by Cambridge University Press: 11 February 2011
Abstract
The recent development of multi-component alloys with exceptional glass forming ability has allowed the processing of large amorphous metal samples. The possibility of formation of thermal tempering stresses during the processing of these bulk metallic glass (BMG) specimens was investigated using the (1) instant freezing, and (2) viscoelastic models. Both models yielded similar results although from vastly different approaches. It was shown that fast convective cooling of Zr41.2Ti13.8Cu12.5Ni10Be22.5 plates could generate significant compressive stresses on the surfaces balanced with mid-plane tension. The crack compliance method was then employed to measure the stress profiles in a BMG plate that was cast in a copper mold. These profiles were roughly parabolic suggesting that thermal tempering was indeed the dominant residual stress generation mechanism. However, the magnitude of the measured stresses (with peak values of only about 1.5% of the yield strength) was significantly lower than the modeling predictions. Possible reasons for this discrepancy are described in relation to the actual casting process and material properties.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2003