Published online by Cambridge University Press: 15 February 2011
Recent results on the temperature and stage dependence of the thermal conductivity of various graphite intercalation compounds are reported and briefly analyzed. In the lowest temperature range the in-plane thermal conductivity which is mainly electronic, is higher than that of pristine graphite. Around room temperature, in spite of an increased electronic conduction, a decrease in the total thermal conductivity relative to pristine graphite is observed. This shows that the dominant effect is the decrease of the lattice contribution due to increased phonon scattering by lattice defects. The c-axis conduction is attributed entirely to phonons and the anisotropy ratio is of order of 102 in the liquid helium range and increases up to several hundreds around room temperature. Some results on the temperature variation of the in-plane and c-axis thermopower for donor and acceptor compounds are also presented and discussed.