Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T06:59:05.537Z Has data issue: false hasContentIssue false

Thermally Annealed GaN Nucleation Layers And The MOCVD Growth Of Si-Doped GaN Films On (00.1) Sapphire

Published online by Cambridge University Press:  21 February 2011

D. K. Wickenden
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723–6099
J. A. Miragliotta
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723–6099
W. A. Bryden
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723–6099
T. J. Kistenmacher
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723–6099
Get access

Abstract

The effect of epitaxial growth temperature in the range 985 – 1050°C on the preparation of device quality Si-doped GaN layers on self-nucleated (00.1) sapphire has been explored. Not unexpectedly, several device-related properties monotonically improve with increasing growth temperature, including: (a) carrier density; and, (b) volume fraction of heteroepitaxial domains. However, a number of equally important device-related properties show a local maximum or minimum and include: (a) optical second-harmonic generation intensity; (b) structural coherence; and, particularly (c) surface morphology. The antecedents of the first class is found in an increase in surface and bulk diffusion and a reduction in film defect incorporation and stress at the GaN/GaN (nucleation layer)/α-Al2O3 heterointerface (even for overlays with thicknesses near 1 μm). The second class apparently stems from the limited range over which the thermally annealed GaN nucleation layer stimulates pseudo two-dimensional growth of the overlayer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES AND FOOTNOTES

1. Yoshida, S., Misawa, S. and Gonda, S., Appl. Phys. Lett. 42, 427 (1983).Google Scholar
2. Amano, H., Sawaki, N., Akasaki, I. and Toyoda, Y., Appl. Phys. Lett. 48, 353 (1986).Google Scholar
3. Detchprohm, T., Hiramatsu, K., Amano, H. and Akasaki, I., Appl. Phys. Lett. 61, 2688 (1992).Google Scholar
4. Nakamura, S., Jap. J. Appl. Phys. 30, L1705 (1991).Google Scholar
5. Wickenden, D. K., Kistenmacher, T. J., Bryden, W. A., Morgan, J. A. and Estes Wickenden, A., Mat. Res. Soc. Symp. Proc. 221, 167 (1991).Google Scholar
6. Molnar, R. J., Lei, T., and Moustakas, T. D., Appl. Phys. Lett. 62, 72 (1993).Google Scholar
7. Estes Wickenden, A., Wickenden, D. K., and Kistenmacher, T. J., J. Appl. Phys., in press.Google Scholar
8. van der Heijden, A.E.D.M. and van der Eerden, J.P., J. Crystal Growth 118, 14 (1992).Google Scholar
9. Maruska, H. P. and Tietjen, J. J., Appl. Phys. Lett. 15, 327 (1969).Google Scholar
10. Hiramatsu, K., Detchprohm, T. and Akasaki, I., Jap. J. Appl. Phys. 32, 1528 (1993).Google Scholar
11. Wickenden, D. K., Miragliotta, J. A., Bryden, W. A., and Kistenmacher, T. J., J. Appl. Phys., in press.Google Scholar
12. Andrews, S. J., Hails, J. E., Harding, M. M., and Cruickshank, D. W. J., Acta Crystallogr. A 43. 70 (1987);Google Scholar
Arndt, W. W. and Willis, B. T. M., Single Crystal Diffractometry (Cambridge University Press, Cambridge, 1966), Ch. 8.Google Scholar
13. Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K. and Sawaki, N., J. Crystal Growth 98, 209 (1989).Google Scholar