Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T14:37:46.949Z Has data issue: false hasContentIssue false

Thermally Controlled Shape-Memory Investigations of Nanocomposites Based on Oligo(ω-pentadecalactone) and Magnetic Nanoparticles Acting as Crosslinks

Published online by Cambridge University Press:  20 May 2015

M. Yasar Razzaq
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
M. Behl
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
A. Lendlein
Affiliation:
Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
Get access

Abstract

Covalent integration of inorganic nanoparticles into polymer matrices leads to a homogenization of their distribution and enhances the structural properties. Here, we report on a thermally-controlled reversible shape-memory effect (R-SME) of magnetic nanocomposites under stress-controlled conditions. The magnetic nanocomposites consisted of an oligo(ω-pentadecalactone) (OPDL) matrix with covalently integrated or physically added magnetic nanoparticles (MNP). The R-SME of these materials was based on crystallization-induced elongation (CIE) and melting-induced contraction (MIC) under a constant stress in thermomechanical experiments. Furthermore, the adjustability of the recovery stress in magnetic nanocomposites as a function of MNP content was investigated. A slight increase in the recovery stress from 0.9 MPa for pure OPDL network to 1.2 MPa for H-NC containing 9 wt% of covalently integrated MNP was observed.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Filipcsei, G., Csetneki, I., Szilagyi, A. and Zrinyi, M., Adv. Polym. Sci. 206, 137 (2007).CrossRefGoogle Scholar
Thevenot, J., Oliveira, H., Sandre, O. and Lecommandoux, S., Chem. Soc. Rev. 42, 7099 (2013).CrossRefGoogle Scholar
Longo, A., Wang, X.L., Ruotolo, A., Peluso, A., Carotenuto, G. and Lortz, R., J. Nanopart. Res. 14 (2012).CrossRefGoogle Scholar
Dai, Q. and Nelson, A., Chem. Soc. Rev. 39, 4057 (2010).CrossRefGoogle Scholar
Ilg, P., Soft Matter 9, 3465 (2013).CrossRefGoogle Scholar
Cuevas, J.M., Alonso, J., German, L., Iturrondobeitia, M., Laza, J.M., Vilas, J.L. and Leon, L.M., Smart Mater. Struct. 18 (2009).CrossRefGoogle Scholar
He, Z.W., Satarkar, N., Xie, T., Cheng, Y.T. and Hilt, J.Z., Adv. Mater. 23, 3192 (2011).CrossRefGoogle Scholar
Buckley, P.R., McKinley, G.H., Wilson, T.S., Small, W., Benett, W.J., Bearinger, J.P., McElfresh, M.W. and Maitland, D.J., IEEE T. Bio-Med. Eng. 53, 2075 (2006).CrossRefGoogle Scholar
Meng, H. and Li, G.Q., Polymer 54, 2199 (2013).CrossRefGoogle Scholar
Xu, J.W. and Song, J., Proc. Natl. Acad. Sci. USA 107, 7652 (2010).CrossRefGoogle Scholar
Bai, S., Zou, H., Dietsch, H., Simon, Y.C. and Weder, C., Macromol. Chem. Phys. 215, 398 (2014).CrossRefGoogle Scholar
Behl, M., Razzaq, M.Y. and Lendlein, A., Mater. Res. Soc. Symp. Proc. 1569, 129 (2013).CrossRefGoogle Scholar
Razzaq, M.Y., Behl, M., Kratz, K. and Lendlein, A., Adv. Mater. 25, 5730 (2013).CrossRefGoogle Scholar
Chung, T., Rorno-Uribe, A. and Mather, P.T., Macromolecules 41, 184 (2008).CrossRefGoogle Scholar
Li, J.J., Rodgers, W.R. and Xie, T., Polymer 52, 5320 (2011).CrossRefGoogle Scholar
Razzaq, M.Y., Behl, M., Kratz, K. and Lendlein, A., Adv. Mater. 25, 5514 (2013).CrossRefGoogle Scholar