Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T10:07:13.320Z Has data issue: false hasContentIssue false

Thermochemistry and Kinetics of Gas-Phase Reactions Relevant to the CVD of Coatings: New Data for Process Models

Published online by Cambridge University Press:  10 February 2011

M. D. Allendorf
Affiliation:
Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551-0969, mdallen@sandia.gov
C. F. Melius
Affiliation:
Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551-0969, mdallen@sandia.gov
A. H. McDaniel
Affiliation:
Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551-0969, mdallen@sandia.gov
Get access

Abstract

Understanding the role of gas-phase reactions is an important step in the development of useful CVD process models. In this article, we review the general types of gas-phase reactions that can occur and discuss quantum-chemistry techniques for predicting their thermochemistry and kinetics. We also describe the use of high-temperature flow reactors to measure gas-phase reaction kinetics. Coupling these theoretical and experimental methods is a powerful approach to the characterization of CVD precursor chemistry. We illustrate this in a discussion of the reaction between BC13 and NH3, which is important in the deposition of hexagonal boron nitride coatings.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Coltrin, M. E.; Kee, R. J.; Evans, G. H., J. Electrochem. Soc., 136 (1989) 819.Google Scholar
2. Weiller, B. H., J. Am. Chem. Soc., 118 (1996) 4975.Google Scholar
3. Ruf, B.; Behrendt, F.; Deutschmann, O.; Warnatz, J., J. Appl. Phys., 79 (1996) 7256.Google Scholar
4. Chase, M. W.; Davies, C. A.; Downey, J. R.; Frurip, D. J.; McDonald, R. A.; Szverud, A. N., J. Phys. Chem. Ref Data, 1985 (1985) 14.Google Scholar
5. Gurvich, L. V.; Veyts, I. V.; Alcock, C. B. Thermodynamic Properties of Individual Substances, CRC Press, Boca Raton,, 1994.Google Scholar
6. Benson, S. W. Thermochemical Kinetics, J. Wiley and Sons, New York, 2nd edn., 1976.Google Scholar
7. Holbrook, K. A.; Pilling, M. J.; Robertson, S. H. Unimolecular Reactions, Second Edition, Wiley, Chichester, 1996.Google Scholar
8. Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions, Blackwell Scientific Publications, Oxford, 1990.Google Scholar
9, Osterheld, T. H.; Allendorf, M. D.; Melius, C. F., J. Phys. Chem., 98 (1994) 6995.Google Scholar
10. Teyssandier, F.; Allendorf, M. D., J Electrochem. Soc., 145 (1997) 2167.Google Scholar
11. Allendorf, M. D.; Melius, C. F., J. Phys. Chem. A, 101 (1997) 2670, and References therein.Google Scholar
12. McDaniel, A. H.; Allendorf, M. D., J. Phys. Chem. A, 102 (1998) 7804.Google Scholar
13. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.Google Scholar
14. Hirst, D. M.A Computational Approach to Chemistry, Blackwell, Oxford,, 1990.Google Scholar
15. Lifshitz, A. (ed.), Shock Tubes in Chemistry, Dekker, New York, 1981.Google Scholar
16. McMillen, D. F.; Kewis, K. E.; Smith, G. P.; Golden, D. M., J. Phys. Chem., 86 (1982) 709.Google Scholar
17. Golden, D. M.; Spokes, G. N.; Benson, S. W., Angew. Chem. Int. Ed., 12 (1973) 534.Google Scholar
18. Howard, C. J., J. Phys. Chem., 83 (1979) 3.Google Scholar
19. Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A., J. Chem. Phys., 94 (1991) 7221.Google Scholar
20. Curtiss, A.; Carpenter, J. E.; Raghavachari, K.; Pople, J. A., J. Chem. Phys., 96 (1992) 9030.Google Scholar
21. Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A., J. Chem. Phys., 106 (1997) 1063.Google Scholar
22. Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A., J. Chem. Phys., 109 (1998) 7764.Google Scholar
23. Ochterski, J. W.; Petersson, G. A.; Wiberg, K. B., J. Am. Chem. Soc., 117 (1995) 11299 and References therein.Google Scholar
24. Ochterski, J. W.; Petersson, G. A.; Montgomery, J. A., J. Chem. Phys., 104 (1996) 2598.Google Scholar
25. Melius, C. F. inBulusu, S. N.(ed.), Chemistry and Physics of Energetic Materials, Kluwer Academic Publishers, Dorderecht, 1990, p. 21.Google Scholar
26. Bauschlicher, C. W. Jr.,; Melius, C. F.; Allendorf, M. D., accepted for publication, J. Chem. Phys., 1998.Google Scholar
27. Melius, C. F.; Allendorf, M. D.; Colvin, M. E. in Fourteenth Int. Conf. on Chem. Vapor Dep./EUROCVD-11, The Electrochemical Society, Pennington, 1997, p. 1.Google Scholar
28. Labanowski, J.; Andzelm, J. (ed.), Density Functional Methods in Chemistry, Springer-Verlag, New York, 1991.Google Scholar
29. Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.Google Scholar
30. Curtiss, L. A.; McGrath, M. P.; Blaudeau, J.-P.; Davis, N. E.; Binning, R. C. Jr.; Radom, L., J. Chem. Phys., 103 (1996) 6104.Google Scholar
31. Berry, R. J.; Burgess, D. R. F.; Nyden, M. R.; Zachariah, M. R.; Melius, C. F.; Schwartz, M., J. Phys. Chem., 100 (1996) 7405.Google Scholar
32. Ho, P.; Colvin, M. E.; Melius, C. F., J. Phys. Chem. A, 101 (1997) 9470.Google Scholar
33. Allendorf, M. D.; Melius, C. F., J. Phys. Chem., 96 (1992) 428.Google Scholar
34. Allendorf, M. D.; Melius, C. F., J. Phys. Chem., 97 (1993) 720.Google Scholar
35. Allendorf, M. D.; Melius, C. F.; Ho, P.; Zachariah, M. R., J. Phys. Chem., 99 (1995) 15285 and References therein.Google Scholar
36. Ho, .; Melius, C. F., J. Phys. Chem., 94 (1990) 51205127.Google Scholar
37. Ho, P.; Melius, C. F., J. Phys. Chem., 99 (1995) 2166.Google Scholar
38. Melius, C. F.; Ho, P., J. Phys. Chem., 95 (1991) 14101419.Google Scholar
39. Zachariah, M. R.; Melius, C. F., J. Phys. Chem. A, 101 (1997) 913.Google Scholar
40. Zachariah, M. R.; Tsang, W., J. Phys. Chem., 99 (1995) 5308.Google Scholar
41. Walsh, R. in Patai, S. and Rappoport, Z. (ed.), The Chemistry of Organic Silicon Compounds, John Wiley and Sons, New York, 1989, p. 371391.Google Scholar
42. Fontijn, A.; Felder, W. in Reactive Intermediates in the Gas Phase, Academic, 1979.Google Scholar
43. Brown, R. L., J. Res. NBS, 83 (1978) 1.Google Scholar
44. Jefferson, T. H. “TJMARI: A Fortran Subroutine for Nonlinear Least Square Parameter Estimation,” Sandia National Laboratories SLL-73-0305, 1973.Google Scholar
45. Coltrin, M. E.; Moffat, H. K.; Kee, R. J.; Rupley, F. M. “CRESLAF (Version 4.0): A Fortran Program for Modeling Laminar, Chemically Reacting, Boundary-Layer Flow in Cylindrical or Planar Channels,” Sandia National Laboratories SAND93-0478 UC-401, 1996.Google Scholar
46. Coltrin, M. E.; Kee, R. J.; Rupley, F. M.; Meeks, E.; Miller, J. A. “Chemkin-III: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics; Surface Chemkin-III: A Fortran Package for Analyzing Heterogeneous Chemical Kinetics at aSolid-surface – Gas-phase Interface.,” Sandia National Laboratories SAND96-8216 UC-405 & SAND96-8217 UC-405, 1996.Google Scholar
47. Allendorf, M. D.; Melius, C. F.; Osterheld, T. H. in Materials Research Society Symposium Proceedings, Pittsburgh, PA, Boston, MA, 1996, p. 453464.Google Scholar
48. Allendorf, M. D.; Osterheld, T. H. in The Electrochemical Society Proceedings Series, Pennington, NJ, Los Angeles, 1996, p. 1622.Google Scholar
49. McDaniel, A. H.; Allendorf, M. D., unpublished data.Google Scholar