Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T12:02:52.283Z Has data issue: false hasContentIssue false

Thermodynamic Properties of Pu-O-H Compounds and Alloys from Density Functional Theory

Published online by Cambridge University Press:  01 February 2011

P. A. Korzhavyi
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), SE-100 44 Stockholm, SWEDEN
L. Vitos
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), SE-100 44 Stockholm, SWEDEN Research Institute for Solid State Physics and Optics, H-1525 Budapest, P.O. Box 49, HUNGARY
B. Johansson
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), SE-100 44 Stockholm, SWEDEN Condensed Matter Theory Group, Department of Physics, Uppsala University, Box 530, SE-751 21 Uppsala, SWEDEN
Get access

Abstract

A theoretical approach has been developed that allows one to obtain thermodynamic properties of plutonium-based alloys and compounds from first-principles electronic structure calculations based on density functional theory. The approach is applied to study the defect structure in non-stoichiometric PuO2±δ.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brooks, M.S.S., Johansson, B., and Skriver, H.L., in Handbook on the Physics and Chemistry of the Actinides, edited by Freeman, A.J. and Lander, G.H. (North-Holland, New York, 1984) Volume I, p. 153.Google Scholar
2. Eriksson, O., Becker, J.D., Balatsky, A.V., and Wills, J.M., J. of Alloys and Compounds, 287, 1 (1999).Google Scholar
3. Savrasov, S. Y., Kotliar, G. & Abrahams, E., Nature 410, 793 (2001).Google Scholar
4. Kudin, K. N., Scuseira, G.E., and Martin, R.L., Phys. Rev. Lett. 89, 266402 (2002).Google Scholar
5. Haschke, J.M., Allen, T.H., and Morales, L.A., Science 287, 285 (2000).Google Scholar
6. Haire, R.G. and Haschke, J.M., MRS Bulletin 26, 689 (2001).Google Scholar
7. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).Google Scholar
8. Kohn, W. and Sham, L. J., Phys. Rev. 140, Al133 (1965).Google Scholar
9. Ruban, A. V. and Skriver, H. L., Comp. Mat. Sci. 15, 119 (1999).Google Scholar
10. Perdew, J.P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
11. Vitos, L., Johansson, B., Kollár, J., and Skriver, H. L., Phys. Rev. B 62, 10046 (2000).Google Scholar
12. Perdew, J.P., Búrke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
13. Abrikosov, I. A. et al., Phys. Rev. B 56, 9319 (1997).Google Scholar
14. Pearson's handbook of'crystallography data for intermetallic phases, Villars, P. and Calvert, L.D., 2nd edition (ASM International, Materials Park, OH, 1991).Google Scholar
15. Migliori, A., Baiardo, J.P., and Darling, T.W., Los Alamos Science 26, 208 (2000).Google Scholar
16. Thermochemical properties of inorganic substances (Supplement), Barin, I., Knacke, O., and Kubaschewski, O. (Springer-Verlag, Berlin, 1977).Google Scholar
17. Benedict, U., Dabos, S., Dufour, C., and Spirlet, J.C., J. of the Less-Common Metals 121, 461 (1986).Google Scholar
18. Kelly, P.J. and Brooks, M.S.S., J. Chem. Soc. Faraday Trans. 83, 1189 (1987).Google Scholar
19. Benedict, U. et al, in Transuranium Elements: A Half Century, edited by Morss, L.R. and Fuger, J. (American Chemical Society, Washington, DC, 1992), p. 396.Google Scholar