Published online by Cambridge University Press: 28 February 2011
The Wagner-Schottky model was used to describe the thermodynamic behavior of ordered intermetallic compound phases. To demonstrate the utility of the approach, the models developed for triple-defect B2 (and B32) and anti-structure L10 phases were used to describe the thermodynamic properties of β-AlLi and γ-TiAl respectively. Since any potential engineering materials to be developed on the basis of intermetallics will be multi-component systems, the methodology was extended to describe the thermodynamic properties of ternary intermetallics. The ternary Ti-Mo-Al system was used as an example for discussion. It is believed that the general topologies concerning the phase equilibria of Ti-M-AI with M being V, Nb, Ta, Mo and W are similar. The relative stabilities of the competing phases, i.e. BCC and HCP, in the mid-composition region of Ti-M-AI were discussed.