No CrossRef data available.
Article contents
Thermoelectric Generators of Sequentially Deposited Si/Si+Ge Nano-layered Superlattices
Published online by Cambridge University Press: 31 January 2011
Abstract
Effective thermoelectric materials have a low thermal conductivity and a high electrical conductivity. The performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT = S2sσ/ KTC, σ is the electrical conductivity T/KTC, where S is the Seebeck coefficient, T is the absolute temperature and KTC is the thermal conductivity. In this study we have prepared the thermoelectric generator device of Si/Si+Ge multi-layer superlattice films using the ion beam assisted deposition (IBAD). To determine the stoichiometry of the elements of Si and Ge in the grown multilayer films and the thickness of the grown multi-layer films Rutherford Backscattering Spectrometry (RBS) and RUMP simulation software package were used. The 5 MeV Si ion bombardments were performed to make quantum clusters in the multi-layer superlattice thin films to decrease the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and cross plane electrical conductivity.
Keywords: Ion bombardment, thermoelectric properties, multi-nanolayers, Figure of merit.
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1181: Symposium DD – Ion Beams and Nano-Engineering , 2009 , 1181-DD02-04
- Copyright
- Copyright © Materials Research Society 2009