No CrossRef data available.
Published online by Cambridge University Press: 07 December 2012
Thermoelectric properties of the Li-doped Cu0.95-xM0.05LixO (M=divalent metal ion; Mn, Ni, Zn) were investigated at the temperature up to 1273 K. In the doped divalent metal ions, Zn2+ ion was the most effective to reduce the thermal conductivity, and the Ni2+ substitution was preferable to decrease the electrical resistivity. For the Cu0.95-xNi0.05LixO sample at x=0.03, the maxima of the dimensionless thermoelectric figure of merit ZT and the power factor P at 1246 K were 4.2×10-2 and 1.6 ×10-4 W/K2m, respectively. The enhancement of the thermoelectric properties of the Li-doped Cu0.95-xM0.05LixO system was discussed.