Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T10:08:57.641Z Has data issue: false hasContentIssue false

Thermoplastic in-situ Molecular Composites

Published online by Cambridge University Press:  15 February 2011

D. R. Wiff
Affiliation:
GenCorp Research, 2990 Gilchrist Road, Akron, Ohio 44305
G. M. Lenke
Affiliation:
GenCorp Research, 2990 Gilchrist Road, Akron, Ohio 44305
Get access

Abstract

The basic concepts of in-situ molecular composite formation are presented with a polyazomethine/nylon 6 system as an example. All the encouraging attributes of molecular reinforcement - increased Tg, solvent resistance and mechanical properties were observed. This provides a commodity resin, such as nylon 6, with properties normally associated with higher priced engineering/specialty resins.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Husman, G., Helminiak, T., Adams, N., Wiff, D. and Benner, C., Coatings and Plastics Preprints, American Chem. Soc., 40, 797 (1979).Google Scholar
2 Helminlak, T. E., Benner, C. L., Arnold, F. E., Husman, G. E., U. S. Patent No. 4,207,407 (June 1980).Google Scholar
3 Takayanagl, N., Ogata, T., Morlkawa, M. and Kai, T., J. Macromol. Sct., Physics B17, 591 (1980).Google Scholar
4 Hwang, W-F., Wiff, D. R., Benner, C. L. and Helmlnlak, T. E., J. Macromol. Sci.- Physics B22, (2), 231 (1983).Google Scholar
5 Wiff, D. R., Helminiak, T. E. and Hwang, W-F., Chapter 8, High Modulus Polymers, Zachariades, A. E. and Porter, R. S., eds., Marcel Dekker, Inc., New York (1988).Google Scholar
6 Wiff, D. R., Timms, S., Helminiak, T. E. and Hwang, W-F., J. Polym. Eng. And Sci., 27, No. 6, 424 (1987).Google Scholar
7 Wiff, D. R., Hwang, W-F., Chuah, H-H. and Soloski, E. J., Polymer Eng. And Sci, 27, No. 20, 1557 (1987).Google Scholar
8 Wereta, A. Jr., Gehatia, M. T. and Wiff, D. R., Polym. Eng. & Sci., 18 (3), 204 (1978).Google Scholar
9 Hwang, W-F., Wiff, D. R. and Helminiak, T. E., U.S. atent No. 4,377,546 (March 1983).Google Scholar
10 Lenke, G. M. and Wiff, D. R., U.S. Patent No. 5,068,292 (November 1991).Google Scholar
11 Ashton, J. E., Halpin, J. C. and Petit, P. H., Primer on Composite Materials, Technomic Publishing Co., Stamford, CT (1969)Google Scholar
12 Halpin, J. C and Tsai, S. W., Effects of Environmental Factors on Composite Materials, AFML-TR-423, June 1969.Google Scholar
13 Jones, R. M., Mechanics of Composite Materials, McGraw-Hill Book Company, New York (1975)Google Scholar
14 Biirgi, H. B. and Dunttz, J. D., Helvetica Chemica Acta, 53, (7), 1747 (1970).CrossRefGoogle Scholar
15 Flory, P. J., Principles of Polymer Chemistry, Cornell University Press (1953).Google Scholar
16 Wolfe, J. F., Encyclopedia of Polymer Science & Engineering, 11, page 601, John Wiley & Sons, New York (1988).Google Scholar
17 Flory, p. J., Proc. R. Soc. London Ser. A., 234, 73 (1956).Google Scholar
18 Matheson, R. R. Jr. and Flory, P. J., Macromolecules, 14, 954 (1981).Google Scholar
19 Lenke, G. M., Fabris, H. J., U.S. Pat. No. 4,414,362 (Nov. 8, 1983), G. M. Lenke, E. G. Melby, H. J. Fabris, U.S. Pat. No. 4,448,956 (May 15, 1984).Google Scholar
20 DSM RIM Nylon, Inc., Nylon Block Copolymers.Google Scholar